P73、面试题9:斐波那契数列】的更多相关文章

面试题 10. 斐波那契数列 题目一:求斐波那契数列的第n项 题目描述:求斐波拉契数列的第n项 写出一个函数,输入n,求斐波拉契(Fibonacci)数列的第n项.斐波拉契数列定义如下: C++ 实现 /* 斐波拉契数列 */ #include <iostream> using namespace std; /* 递归实现 */ long long Fibonacci1( unsigned int n ) { if ( n <= 1 ) { return(n); } return(Fib…
题目:写一个函数,输入n,求斐波那契数列的第n项. package Solution; /** * 剑指offer面试题9:斐波那契数列 * 题目:写一个函数,输入n,求斐波那契数列的第n项. * 0, n=1 * 斐波那契数列定义如下:f(n)= 1, n=2 * f(n-1)+f(n-2), n>2 * @author GL * */ public class No9Fibonacci { public static void main(String[] args) { System.out…
题目一:写一个函数,输入n,求斐波拉契数列的第n项. 斐波拉契数列的定义如下: { n=; f(n)={ n=; { f(n-)+f(n-) n>; 斐波拉契问题很明显我们会想到用递归来解决: long long Fibonacci(unsigned int n) { ) ; ) ; ) )+Fibonacci(n-); } 这道题用递归解决思路很清晰,代码很简单,那么问题来了 根据马克思辩证主义思想,往往简单的思路会带来较大的 时间空间开销.在这种递归计算的过程中往往会计算很多 重复的项,比如…
书中方法一:递归,这种方法效率不高,因为可能会有很多重复计算. public long calculate(int n){ if(n<=0){ return 0; } if(n == 1){ return 1; } return calculate(n-1) + calculate(n-2); } 书中方法二:更好的方法是将这个斐波那契数列的计算理解成动态规划,第n步的结果依赖于第n-1步和第n-2步的结果,状态转移方程很容易写出来. public long calculate2(int n){…
题目 写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项.斐波那契数列的定义如下: F(0) = 0,   F(1) = 1 F(N) = F(N - 1) + F(N - 2), 其中 N > 1. 斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出. 答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1. 示例 1: 输入:n = 2 输出:1 示例 2: 输入:n = 5 输出:5 提示: 0…
问题描述 写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项.斐波那契数列的定义如下: F(0) = 0,   F(1) = 1 F(N) = F(N - 1) + F(N - 2), 其中 N > 1. 斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出. 答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1.   示例 1: 输入:n = 2 输出:1 示例 2: 输入:n = 5 输出:5  …
很长一段时间里,我都非常疑惑:“我写的技术文章不差啊,有内容的同时还很有趣,不至于每篇只有区区几十个人读啊?为什么有些内容简单到只有一行注册码的文章浏览量反而轻松破万?”这样的疑惑如鲠在喉啊!写技术博客做分享的人,有几个真心实意的说只写给自己看的?这无非是写出来后没人看的自我安慰(不好意思,我就属于这种人,/(ㄒoㄒ)/~~). 但就在昨天晚上,我终于恍然大悟:技术交流群里有一个叫涛涛的小伙伴用几句通俗易懂的道理就点醒了我:“高深的文章,看懂的人少,适合高层:像只有注册码的文章,反而是大众所需,…
// 面试题:斐波那契数列 // 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项. #include <iostream> using namespace std; // ====================方法1:递归==================== //注意这种递归方法虽然看起来很简单,但是由于压入栈和弹出,会存在栈溢出的可能,而且效率特别慢,且n越大效率越慢 long long Fibonacci_Solution1(unsigned int n)//…
题目一:写一个函数,输入n,求斐波那契数列(Fibonacci)数列的第n项,斐波那契数列的定义如下: f(n) = {0  n = 0;  1   n = 1;  f(n-1)+f(n-2)  n>1} 题目二:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 即求斐波那契数列的f(n)的结果. 在青蛙跳台阶的问题中,如果把条件改成:一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶.....它也可以跳上n级,此时该青蛙跳上一个n级的台阶总共有多少种跳法…
面试题9:斐波那契数列及其变形(跳台阶.矩形覆盖) 提交网址: http://www.nowcoder.com/practice/c6c7742f5ba7442aada113136ddea0c3?tpId=13&tqId=11160 参与人数:7267  时间限制:1秒  空间限制:32768K 题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项 Fibonacci(int n). 分析: 用递归会TLE,因为有不少地方进行了重复计算,改为循环即可解决(迭代法…