MIT算法导论——第四讲.Quicksort】的更多相关文章

本栏目(Algorithms)下MIT算法导论专题是个人对网易公开课MIT算法导论的学习心得与笔记.所有内容均来自MIT公开课Introduction to Algorithms中Charles E. Leiserson和Erik Demaine老师的讲解.(http://v.163.com/special/opencourse/algorithms.html) 第四节-------快速排序 Quicksort 这节课的主要内容分为两部分,一部分是介绍快速排序算法,分析其在最好.最坏以及最好最差…
本栏目(Algorithms)下MIT算法导论专题是个人对网易公开课MIT算法导论的学习心得与笔记.所有内容均来自MIT公开课Introduction to Algorithms中Charles E. Leiserson和Erik Demaine老师的讲解.(http://v.163.com/special/opencourse/algorithms.html) 第一节-------课程简介及算法分析 Analysis of algorithm 算法分析:关于计算机程序在效率和资源利用方面的理论…
本栏目(Algorithms)下MIT算法导论专题是个人对网易公开课MIT算法导论的学习心得与笔记.所有内容均来自MIT公开课Introduction to Algorithms中Charles E. Leiserson和Erik Demaine老师的讲解.(http://v.163.com/special/opencourse/algorithms.html) 第二节-------渐近符号.递归及解法 Solving Recurrence 第二节课的内容比较偏数学化,没有算法方面的知识.但尽管…
本栏目(Algorithms)下MIT算法导论专题是个人对网易公开课MIT算法导论的学习心得与笔记.所有内容均来自MIT公开课Introduction to Algorithms中Charles E. Leiserson和Erik Demaine老师的讲解.(http://v.163.com/special/opencourse/algorithms.html) 第五节-------线性时间排序 Linear Time Sort 这节课的主要内容是分析基于比较的排序能够达到的最快效率以及介绍几种…
详细MIT算法导论笔记 (网络链接) 第一讲:课程简介及算法分析 (Sheridan) 第二讲:渐近符号.递归及解法  (Sheridan) 第三讲:分治法(1)(Sheridan) 第四讲:快排及随机化算法 (Sheridan) 第五讲:线性时间排序 (Sheridan) 第六讲:顺序统计.中值(Sheridan)…
本栏目(Algorithms)下MIT算法导论专题是个人对网易公开课MIT算法导论的学习心得与笔记.所有内容均来自MIT公开课Introduction to Algorithms中Charles E. Leiserson和Erik Demaine老师的讲解.(http://v.163.com/special/opencourse/algorithms.html) 第三节-------分治法 The Divide-and-Conquer 这节课的主要内容是介绍分治法的思想,以及一些应用分治法思想的…
http://open.163.com/movie/2010/12/G/F/M6UTT5U0I_M6V2T1JGF.html…
本文主要实践一下算法导论上的快排算法,活动活动. 伪代码图来源于 http://www.cnblogs.com/dongkuo/p/4827281.html // imp the quicksort algorithm 2016.12.21 #include <iostream> #include <fstream> #include <vector> using namespace std; int Partion(vector<int> & ve…
算法导论上面快速排序的实现. 代码: def partition(array, left, right): i = left-1 for j in range(left, right): if array[j] <= array[right]: i += 1 array[j], array[i] = array[i], array[j] array[i+1], array[right] = array[right], array[i+1] return i+1 def quicksort(arr…
背包四讲 背包问题(Knapsack problem)是一种组合优化的NP完全问题.问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高.问题的名称来源于如何选择最合适的物品放置于给定背包中.相似问题经常出现在商业.组合数学,计算复杂性理论.密码学和应用数学等领域中.也可以将背包问题描述为决定性问题,即在总重量不超过W的前提下,总价值是否能达到V?它是在1978年由Merkle和Hellman提出的. ---百度百科 本笔记参考视频…
一.高级数据结构 本章以后到第21章(并查集)隶属于高级数据结构的内容.前面还留了两章:贪心算法和摊还分析,打算后面再来补充.之前的章节讨论的支持动态数据集上的操作,如查找.插入.删除等都是基于简单的线性表.链表和树等结构,本章以后的部分在原来更高的层次上来讨论这些操作,更高的层次意味着更复杂的结构,但更低的时间复杂度(包括摊还时间). B树是为磁盘存储还专门设计的平衡查找树.因为磁盘操作的速度要远远慢于内存,所以度量B树的性能,不仅要考虑动态集合操作消耗了多少计算时间,还要考虑这些操作执行了多…
写在前面 整个项目都托管在了 Github 上:https://github.com/ikesnowy/Algorithms-4th-Edition-in-Csharp 查找更为方便的版本见:https://alg4.ikesnowy.com/ 这一节内容可能会用到的库文件有 Quick,同样在 Github 上可以找到. 善用 Ctrl + F 查找题目. 习题&题解 2.3.1 解答 2.3.2 解答 2.3.3 解答 N / 2 在快速排序中,一个元素要被交换,有以下两种情况 1.该元素是…
其实算法本身不难,第一遍可以只看伪代码和算法思路.如果想进一步理解的话,第三章那些标记法是非常重要的,就算要花费大量时间才能理解,也不要马马虎虎略过.因为以后的每一章,讲完算法就是这样的分析,精通的话,很快就读完了.你所说的证明和推导大概也都是在第三章介绍了,可以回过头再认真看几遍. 至于课后题,比较难,我只做了前几章,如果要做完需要更多时间和精力.这可以通过之后做算法题来弥补,可以去leetcode等网站找一些经典的算法题做一做,加深理解. Facebook的工程师写的攻略,介绍了用算法导论来…
1. 什么是红黑树 (1) 简介     上一篇我们介绍了基本动态集合操作时间复杂度均为O(h)的二叉搜索树.但遗憾的是,只有当二叉搜索树高度较低时,这些集合操作才会较快:即当树的高度较高(甚至一种极端情况是树变成了1条链)时,这些集合操作并不比在链表上执行的快.     于是我们需要构建出一种"平衡"的二叉搜索树.     红黑树(red-black tree)正是其中的一种.它可以保证在最坏的情况下,基本集合操作的时间复杂度是O(lgn). (2) 性质     与普通二叉搜索树不…
转载自:http://blog.csdn.net/speedme/article/details/24231197 1. 什么是动态规划 ------------------------------------------- dynamic programming is a method for solving complex problems by breaking them down into simpler subproblems. (通过把原问题分解为相对简单的子问题的方式求解复杂问题的…
自从打ACM以来也算是用归并排序了好久,现在就写一篇博客来介绍一下这个算法吧 :) 图片来自维基百科,显示了完整的归并排序过程.例如数组{38, 27, 43, 3, 9, 82, 10}. 在算法导论讲分治算法一章的时候提到了归并排序.首先,归并排序是一个分治算法. 归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表, 即把待排序序列分为若干个有序的子序列,再把有序的子序列合并为整体有序序列. merg() 函数是用来合并两个已有序的数组.  是整个算法的关键. 那么归并…
序 高速排序(QuickSort)也是一种排序算法,对包括n个数组的输入数组.最坏情况执行时间为O(n^2). 尽管这个最坏情况执行时间比較差.可是高速排序一般是用于排序的最佳有用选择.这是由于其平均性能相当好.期望的执行时间为O(nlgn).且O(nlgn)中隐含的常数因子非常小.另外它还能够进行就地排序在虚拟环境中也能非常好的工作. GitHub chapter 7 程序代码下载 原理 高速排序也和合并排序一样,基于分治法,分为分解.解决.合并三个步骤. 分解:数组array[low-hig…
前面我们学习二叉搜索树的时候发如今一些情况下其高度不是非常均匀,甚至有时候会退化成一条长链,所以我们引用一些"平衡"的二叉搜索树.红黑树就是一种"平衡"的二叉搜索树,它通过在每一个结点附加颜色位和路径上的一些约束条件能够保证在最坏的情况下基本动态集合操作的时间复杂度为O(nlgn).以下会总结红黑树的性质,然后分析红黑树的插入操作,并给出一份完整代码. 先给出红黑树的结点定义: #define RED 1 #define BLACK 0 ///红黑树结点定义,与普通…
http://www.52nlp.cn/%E6%96%AF%E5%9D%A6%E7%A6%8F%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E4%B8%8Enlp%E7%AC%AC%E5%9B%9B%E8%AE%B2%E8%AF%8D%E7%AA%97%E5%8F%A3%E5%88%86%E7%B1%BB%E5%92%8C%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C 斯坦福大学深度学习与自然语言处理第四讲:词窗口分类和神经网络 3条回复 斯…
目录 第1讲 前言:本书讲什么:如何使用本书: 第2讲 初始SLAM:引子-小萝卜的例子:经典视觉SLAM框架:SLAM问题的数学表述:实践-编程基础: 第3讲 三维空间刚体运动 旋转矩阵:实践-Eigen:旋转向量和欧拉角:四元数:相似.仿射.射影变换:实践-Eigen几何模块:可视化演示: 第4讲 李群与李代数 李群李代数基础:指数与对数映射:李代数求导与扰动模型:实践-Sophus:相似变换群与李代数:小结: 第5讲 相机与图像 相机模型:图像:实践-图像的存取与访问:实践-拼接点云: 第…
0 讲座 (1)SLAM定义 对比雷达传感器和视觉传感器的优缺点(主要介绍视觉SLAM) 单目:不知道尺度信息 双目:知道尺度信息,但测量范围根据预定的基线相关 RGBD:知道深度信息,但是深度信息对距离也有要求 vSLAM(视觉SLAM) 摄像机(主要)+IMU+超声波避障传感器 2016年之后已经可以跑一点DEMO程序了(在刚体的和静态的环境下) 视觉SLAM的几个模块 传感器数据(图像数据采集点云) 视觉里程计(估计摄像机参数) 后端(对摄像机参数优化,因为摄像机误差累积跟IMU一样,因此…
http://blog.csdn.net/l281865263/article/details/50278745 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.内容大多来自Standford公开课machine lear…
第四讲_图像识别之图像分类Image Classification 目录 图片分类 性能指标:top1,top5 ILSVRC:每种任务数据集不一样 imageNet:根据WorldNet组织的图片集,为每个名词提供平均1000张图片 网络进化 卷积神经网络(CNN) 基础神经网络: 神经元(输入,w,b,sigmoid) 优化:梯度下降,BP反向传播(链式规则),3~5层 优化交叉熵(之前是均方误差):批量梯度下降,随机梯度下降(学习率.步长,扰动->动量算法momentum) 构建CNN的基…
序 算法导论一书的第四部分-高级设计和分析技术从本章开始讨论,主要分析高效算法的三种重要技术:动态规划.贪心算法以及平摊分析三种. 首先,本章讨论动态规划,它是通过组合子问题的解而解决整个问题的,通常应用于最优化问题. 动态规划算法的设计可以分为如下4个步骤: 描述最优解的结构 递归定义最优解的值 按照自底向上的方式计算最优解的值 由计算出的结果构造一个最优解 15.1 装配线调度 问题描述 第一个动态规划的例子是求解一个制造问题,Colonel汽车公司在有两条装配线的工厂生产汽车,具体如下图所…
序 快速排序(QuickSort)也是一种排序算法,对包含n个数组的输入数组,最坏情况运行时间为O(n^2).虽然这个最坏情况运行时间比较差,但是快速排序通常是用于排序的最佳实用选择,这是因为其平均性能相当好,期望的运行时间为O(nlgn),且O(nlgn)中隐含的常数因子很小,另外它还能够进行就地排序在虚拟环境中也能很好的工作. GitHub chapter 7 程序代码下载 原理 快速排序也和合并排序一样,基于分治法,分为分解.解决.合并三个步骤: 分解:数组array[low-high]被…
由于偷懒不想用泛型,所以直接用了整型来写了一份 ①首先你得有一个矩阵的class Matrix ②Matrix为了方便用下标进行运算, Matrix的结构如图:(我知道我的字丑...) Matrix.h代码如下:(个人并不喜欢把代码全写在一块,对于阅读者是相当巨大的负担,其实自己受不了(逃)) #pragma once #include<vector> using namespace std; class Matrix { public: vector<vector<int>…
目录 一 视觉SLAM中的传感器 二 经典视觉SLAM框架 三 SLAM问题的数学表述 注:原创不易,转载请务必注明原作者和出处,感谢支持! 本讲主要内容: (1) 视觉SLAM中的传感器 (2) 经典视觉SLAM框架 (3) SLAM问题的数学表述 一 视觉SLAM中的传感器 想象一个在室内的移动机器人在自由地探索室内的环境,那么定位与建图可以直观地理解成: (1) 我在什么地方?--定位 (2) 周围环境是怎样的?--建图 而要完成定位和建图则需要各种传感器的支持.传感器一般可以分为两类,一…
版权声明:本文为博主原创文章,转载请注明出处: http://www.cnblogs.com/newneul/p/8545450.html 6.在PnP优化中,将第一个相机的观测也考虑进来,程序应如何书写?最后结果会有何变化?分析:实际上在PnP例子中,我们可以把第一帧作为世界坐标系,然后在优化过程中对于第一帧的RT我们不做优化,但是我们在添加节点时仍然要将第一帧在世界坐标系下的空间点加入到图中,并且与第一帧的位姿链接起来,然后将第一帧坐标系下的空间点与第二帧的位姿连接起来.下面是我们修改的部分…
在<算法导论>一书中,插入排序作为一个例子是第一个出现在该书中的算法. 插入排序: 对于少量元素的排序,它是一个有效的算法. 插入排序的工作方式像许多人排序一手扑克牌.开始时,我们手中牌为空,我们每次从牌堆中取出一张牌并将其放入正确的位置.为了找到一张牌的正确位置,我们从左到右将它与手中已有的每张牌进行比较. 将其伪代码过程命名为 INSERTION-SORT,参数是一个数组A,具体如下: INSERTION-SORT(A): for j = 2 to A.length key = A[j] …
B树 1. 简介 在之前我们学习了红黑树,今天再学习一种树--B树.它与红黑树有许多类似的地方,比如都是平衡搜索树,但它们在功能和结构上却有较大的差别. 从功能上看,B树是为磁盘或其他存储设备设计的,能够有效的降低磁盘的I/O操作数,因此我们经常看到有许多数据库系统使用B树或B树的变种来储存数据结构:从结构上看,B树的结点可以有很多孩子,从数个到数千个,这通常依赖于所使用的磁盘的单元特性. 如下图,给出了一棵简单的B树. 从图中我们可以发现,如果一个内部结点包含n个关键字,那么结点就有n+1个孩…