首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
MR 的 mapper 数量问题
】的更多相关文章
MR 的 mapper 数量问题
看到群里面一篇文章涨了贱识 http://www.cnblogs.com/xuxm2007/archive/2011/09/01/2162011.html 之前关注过 reduceer 的数量问题,还没注意到 mapper 的数量怎么确定的 文章中可以提炼出三点: 1.block和split的关系:2.mapper数量是怎么确定的:3.一个split不会包含两个File的Block,不会跨越File边界 还好自己手贱去翻了一下源码 在hadoop2.2.0 的源码中关于mapper数量确定的核心…
MapReduce :基于 FileInputFormat 的 mapper 数量控制
本篇分两部分,第一部分分析使用 java 提交 mapreduce 任务时对 mapper 数量的控制,第二部分分析使用 streaming 形式提交 mapreduce 任务时对 mapper 数量的控制. 环境:hadoop-3.0.2 前言: 熟悉 hadoop mapreduce 的人可能已经知道,即使在程序里对 conf 显式地设置了 mapred.map.tasks 或 mapreduce.job.maps,程序也并没有运行期望数量的 mapper. 这是因为,mapper 的数量由…
Hadoop-2.4.1学习之怎样确定Mapper数量
MapReduce框架的优势是能够在集群中并行运行mapper和reducer任务,那怎样确定mapper和reducer的数量呢,或者说怎样以编程的方式控制作业启动的mapper和reducer数量呢?在<Hadoop-2.4.1学习之Mapper和Reducer>中以前提及建议reducer的数量为(0.95~1.75 ) * 节点数量 * 每一个节点上最大的容器数,并可用法Job.setNumReduceTasks(int).mapper的数量由输入文件的大小确定.且没有相应的setNu…
[Hadoop] mapper数量的控制
确定map任务数时依次优先参考如下几个原则: 1) 每个map任务使用的内存不超过800M,尽量在500M以下 比如处理256MB数据需要的时间为10分钟,内存为800MB,此时如果处理128MB时,内存可以减小为400MB,则选择每一个map的处理数据量为128MB 2) 每个map任务运行时间控制在大约20分钟,最好1-3分钟 比如处理256MB数据需要的时间为30分钟,内存为200MB,则应该考虑减小map的计算时间,比如将每一个map的处理数据量设置为128MB,将时…
mapreduce中控制mapper的数量
很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数决定.在默认情况下,最终input占据了多少block,就应该启动多少个Mapper.如果输入的文件数量巨大,但是每个文件的size都小于HDFS的blockSize,那么会造成启动的Mapper等于文件的数量(即每个文件都占据了一个block),那么很可能造成启动的Mapper数量超出限制而导致崩溃.这些逻辑确实是正确的,但都是在默认情况下的逻辑.其实如果进行一些客户化的设置,就可以控制了.…
深度分析如何在Hadoop中控制Map的数量
深度分析如何在Hadoop中控制Map的数量 guibin.beijing@gmail.com 很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数决定.在默认情况下,最终input 占据了多少block,就应该启动多少个Mapper.如果输入的文件数量巨大,但是每个文件的size都小于HDFS的blockSize,那么会造成 启动的Mapper等于文件的数量(即每个文件都占据了一个block),那么很可能造成启动的Mapper数量超出限制而导…
hadoop中map和reduce的数量设置
hadoop中map和reduce的数量设置,有以下几种方式来设置 一.mapred-default.xml 这个文件包含主要的你的站点定制的Hadoop.尽管文件名以mapred开头,通过它可以控制用户maps和 reduces的默认的设置. 下面是一些有用变量: 名字 含义 dfs.block.size 分布式文件系统中每个数据块的大小 (bytes) io.sort.factor 合并排序时每层输入的文件数 io.sort.mb 排序输入的reduce时缓存大小 io.file.buffe…
深度分析如何在Hadoop中控制Map的数量(摘抄)
很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数决定.在默认情况下,最终input占据了多少block,就应该启动多少个Mapper.如果输入的文件数量巨大,但是每个文件的size都小于HDFS的blockSize,那么会造成启动的Mapper等于文件的数量(即每个文件都占据了一个block),那么很可能造成启动的Mapper数量超出限制而导致崩溃.这些逻辑确实是正确的,但都是在默认情况下的逻辑.其实如果进行一些客户化的设置,就可以控制了.…
Hive on Tez 中 Map 任务的数量计算
Hive on Tez Mapper 数量计算 在Hive 中执行一个query时,我们可以发现Hive 的执行引擎在使用 Tez 与 MR时,两者生成mapper数量差异较大.主要原因在于 Tez 中对 inputSplit 做了 grouping 操作,将多个 inputSplit 组合成更少的 groups,然后为每个 group 生成一个 mapper 任务,而不是为每个inputSplit 生成一个mapper 任务.下面我们通过日志分析一下这中间的整个过程. 1.MR模式 在 mr…
HIVE SQL产生的文件数量及参数调优
产生背景:sqoop抽取oracle数据到hive表时,只能写入到固定分区(--hive-partition-key #hive分区字段 --hive-partition-value #hive分区值).于是先把数据抽取到一张增量表,然后从增量表动态写入分区表. set hive.exec.dynamic.partition.mode = true; --使用动态分区时,设置为ture. set hive.exec.dynamic.partition.mode = nonstrict; --动态…