$$\bex \p_3\bbu\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=2,\quad \frac{27}{16}\leq q\leq \frac{5}{2}. \eex$$…
$$\bex \p_3\pi\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{12}{7},\quad \frac{12}{7}\leq q\leq 4. \eex$$…
$$\bex u_3\in L^\infty(0,T;L^\frac{10}{3}(\bbR^3)). \eex$$…
$$\bex u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{3}{4}+\frac{1}{2q},\quad \frac{10}{3}<q\leq\infty. \eex$$…
$$\bex u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{2}{3}+\frac{2}{3q},\quad \frac{7}{2}<q\leq \infty. \eex$$…
$$\bex u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{5}{8},\quad \frac{24}{5}<q\leq \infty. \eex$$…
$$\bex u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{1}{2},\quad 6< q\leq \infty. \eex$$…
$$\bex \p_3\bbu\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=2,\quad \frac{9}{4}\leq q\leq 3. \eex$$…
$$\bex \p_3\bbu\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{3}{2},\quad 2\leq q\leq \infty. \eex$$…
$$\bex \sen{\pi}_{L^{s,\infty}(0,T;L^{q,\infty}(\bbR^3))} +\sen{{\bf b}}_{L^{\gamma,\infty}(0,T;L^{\tt,\infty}(\bbR^3))}^2\leq \ve_*, \eex$$ with $$\bex \frac{2}{s}+\frac{3}{q}=2,\quad \frac{5}{2}\leq q\leq 3; \eex$$ $$\bex \frac{2}{\gamma}+\frac{3}{…