【二】Spark 核心】的更多相关文章

spark 核心 spark core RDD创建 >>> RDD转换 >>> RDD缓存 >>> RDD行动 >>> RDD输出 RDD[Resilient Distributed Dataset] 它是一个弹性分布式数据集,具有良好的通用性.容错性与并行处理数据的能力,为用户屏蔽了底层对数据的复杂抽象和处理,为用户提供了一组方便的数据转换与求值方法. 弹性 存储弹性:n内存与磁盘d额自动切换 容错弹性:数据丢失可以自动恢复 j计算…
一.SPARK-CORE 1.spark核心模块是整个项目的基础.提供了分布式的任务分发,调度以及基本的IO功能,Spark使用基础的数据结构,叫做RDD(弹性分布式数据集),是一个逻辑的数据分区的集合,可以跨机器.RDD可以通过两种方式进行创建,一种是从外部的数据集引用数据,第二种方式是通过在现有的RDD上做数据转换.RDD抽象是通过语言集成的API来进行暴露,它简化了编程的复杂度,因为这种操纵RDD的方式类似于操纵本地数据集合 二.RDD变换(API阅读) ** * A Resilient…
本文目的     最近在使用Spark进行数据清理的相关工作,初次使用Spark时,遇到了一些挑(da)战(ken).感觉需要记录点什么,才对得起自己.下面的内容主要是关于Spark核心-RDD的相关的使用经验和原理介绍,作为个人备忘,也希望对读者有用.     为什么选择Spark     原因如下 代码复用:使用Scala高级语言操作Spark,灵活方便,面向对象,函数编程的语言特性可以全部拿来.Scala基本上可以无缝集成java及其相关库.最重要的是,可以封装组件,沉淀工作,提高工作效率…
本章内容: 1.功能描述 本篇文章就要根据源码分析SparkContext所做的一些事情,用过Spark的开发者都知道SparkContext是编写Spark程序用到的第一个类,足以说明SparkContext的重要性:这里先摘抄SparkContext源码注释来简单介绍介绍SparkContext,注释的第一句话就是说SparkContext为Spark的主要入口点,简明扼要,如把Spark集群当作服务端那Spark Driver就是客户端,SparkContext则是客户端的核心:如注释所说…
本章内容: 1.功能概述 SparkEnv是Spark的执行环境对象,其中包括与众多Executor执行相关的对象.Spark 对任务的计算都依托于 Executor 的能力,所有的 Executor 都有自己的 Spark 的执行环境 SparkEnv.有了 SparkEnv,就可以将数据存储在存储体系中:就能利用计算引擎对计算任务进行处理,就可以在节点间进行通信等.在local模式下Driver会创建Executor,local-cluster部署模式或者Standalone部署模式下Wor…
Netty 源码 Channel(二)核心类 Netty 系列目录(https://www.cnblogs.com/binarylei/p/10117436.html) 一.Channel 类图 二.AbstractChannel 2.1 几个重要属性 // SocketChannel 的 parent 是 ServerSocketChannel private final Channel parent; // 唯一标识 private final ChannelId id; // Netty…
科普Spark,Spark是什么,如何使用Spark(1)转自:http://www.aboutyun.com/thread-6849-1-1.html 阅读本文章可以带着下面问题:1.Spark基于什么算法的分布式计算(很简单)2.Spark与MapReduce不同在什么地方3.Spark为什么比Hadoop灵活4.Spark局限是什么5.什么情况下适合使用Spark 科普Spark,Spark核心是什么,如何使用Spark(2)转自:http://www.aboutyun.com/threa…
学习的博客:http://elf8848.iteye.com/blog/875830/ 我项目中所用的版本:4.2.0.博客的时间比较早,11年的,学习的是Spring3 MVC.不知道版本上有没有变化比较大的功能. spring mvc教程(二)核心流程及配置详解 1.核心流程图(基于注解方式) http请求->DispatcherServlet --> DefaultAnnotationHandlerMapping --> 多个拦截器 --> Controller -->…
大数据体系概览Spark.Spark核心原理.架构原理.Spark特点 大数据体系概览(Spark的地位) 什么是Spark? Spark整体架构 Spark的特点 Spark核心原理 Spark架构原理 spark内核架构 RDD及其特点 Spark SQL VS Hive Spark Streaming VS Storm spark 任务提交流程 小提示:这里,使用axure(原型制作工具),来画图十分方便,个人认为比viso或者是processon等流程图制作工具简单多了. 点击链接,看取…
大家好!转眼又到了经验分享的时间了.吼吼,我这里没有摘要也没有引言,只有单纯的经验分享,请见谅哦! 言归正传,目前在大数据领域能够提供的核心计算的工具,如离线计算hadoop生态圈的mr计算模型,以及依赖mr的hive:在spark生态圈中包含spark core和spark sql.实时计算领域中有storm和spark streaming. 那么单纯看技术核心,本质上就是mr和spark 两种计算模型的竞争,那么storm会在以后的分享中提及,这里不做介绍. 之前很多人都在呼吁说spark的…
本文主要内容来自于<Hadoop权威指南>英文版中的Spark章节,能够说是个人的翻译版本号,涵盖了基本的Spark概念.假设想获得更好地阅读体验,能够訪问这里. 安装Spark 首先从spark官网下载稳定的二进制分发版本号,注意与你安装的Hadoop版本号相匹配: wget http://archive.apache.org/dist/spark/spark-1.6.0/spark-1.6.0-bin-hadoop2.6.tgz 解压: tar xzf spark-x.y.z-bin-di…
一.RDD(弹性分布式数据集) RDD 是 Spark 最核心的数据结构,RDD(Resilient Distributed Dataset)全称为弹性分布式数据集,是 Spark 对数据的核心抽象,也是最关键的抽象,它实质上是一组分布式的 JVM 不可变对象集合,不可变决定了它是只读的,所以 RDD 在经过变换产生新的 RDD 时,原有 RDD 不会改变. 1.1.设计背景 在实际应用中,存在许多迭代式计算,这些应用场景的共同之处是,不同计算阶段之间会重用中间结果,即一个阶段的输出结果会作为下…
前言:本文是我学习Spark 源码与内部原理用,同时也希望能给新手一些帮助,入道不深,如有遗漏或错误的,请在原文评论或者发送至我的邮箱 tongzhenguotongzhenguo@gmail.com 摘要: 1.作业调度核心--DAGScheduler 2.DAGScheduler类说明 2.1DAGScheduler 2.2ActiveJob 2.3Stage 2.4Task 3.工作流程 3.1划分Stage 3.2生成Job,提交Stage 3.3任务集的提交 3.4任务作业完成状态的监…
Spark中最核心的概念为RDD(Resilient Distributed DataSets)中文为:弹性分布式数据集,RDD为对分布式内存对象的 抽象它表示一个被分区不可变且能并行操作的数据集:RDD为可序列化的.可缓存到内存对RDD进行操作过后还可以存到内存中,下次操作直接把内存中RDD作为输入,避免了Hadoop MapReduce的大IO操作: RDD生成 Spark所要处理的任何数据都是存储在RDD之中,目前两种方式可以生成一个RDD: 1.从RDD进行转换操作 2.使用外部存储系统…
版权声明:本文出自汪磊的博客,转载请务必注明出处. Java线程池技术属于比较"古老"而又比较基础的技术了,本篇博客主要作用是个人技术梳理,没什么新玩意. 一.Java线程池技术的由来 我们平时使用线程来进行异步操作时,线程的创建,销毁等相对来说都是比较消耗资源的,试想这样一个业务情景:高并发请求,但是每次请求的时间非常短.如果我们为每一个请求都单独创建一个线程来执行,就会消耗大量设备资源,使设备处于高负荷状态,显然这样的处理就有很大问题了.这时候我们就可以用线程池技术来解决了,我们在…
http://blog.csdn.net/pipisorry/article/details/53257188 弹性分布式数据集RDD(Resilient Distributed Dataset) 术语定义 l弹性分布式数据集(RDD): Resillient Distributed Dataset,Spark的基本计算单元,可以通过一系列算子进行操作(主要有Transformation和Action操作): l有向无环图(DAG):Directed Acycle graph,反应RDD之间的依…
https://blog.csdn.net/jiangpeng59/article/details/52538254 为什么单独讲解combineByKey? 因为combineByKey是Spark中一个比较核心的高级函数,其他一些高阶键值对函数底层都是用它实现的.诸如 groupByKey,reduceByKey等等 如下给出combineByKey的定义,其他的细节暂时忽略(1.6.0版的函数名更新为combineByKeyWithClassTag)   def combineByKey[…
spark运行结构图如下: spark基本概念 应用程序(application):用户编写的spark应用程序,包含驱动程序(Driver)和分布在集群中多个节点上运行的Executor代码,在执行过程中由一个或者多个作业组成. 驱动程序(dirver):spark中Driver即运行上述Application的main函数并且创建sparkContext,其中sparkcontext的目的是为了准备spark应用程序的运行环境.在 spark中由sparkcontext负责与cluster…
简介 spark RDD操作具体参考官网:http://spark.apache.org/docs/latest/rdd-programming-guide.html#overview RDD全称叫做Resilient Distributed Datasets,直译为弹性分布式数据集,是spark中非常重要的概念. 首先RDD是一个数据的集合,这个数据集合被划分成了许多的数据分区,而这些分区被分布式地存储在不同的物理机器当中,如图: 我们反过来想一下,RDD就是很多物理数据块的逻辑抽象.不仅如此…
一.spi总线注册 这里所说的SPI核心,就是指/drivers/spi/目录下spi.c文件中提供给其他文件的函数,首先看下spi核心的初始化函数spi_init(void).程序如下: 点击(此处)折叠或打开 static int __init spi_init(void) { int    status; buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); if (!buf) { status = -ENOMEM; goto err0; } status = bu…
在spark 源码分析之五 -- Spark内置RPC机制剖析之一创建NettyRpcEnv中,剖析了NettyRpcEnv的创建过程. Dispatcher.NettyStreamManager.TransportContext.TransportClientFactory.TransportServer.Outbox.Inbox等等基础的知识都已经在前面剖析过了. 可以参照如下文章做进一步了解. p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12…
特别提示:本人博客部分有参考网络其他博客,但均是本人亲手编写过并验证通过.如发现博客有错误,请及时提出以免误导其他人,谢谢!欢迎转载,但记得标明文章出处:http://www.cnblogs.com/mao2080/ 大家好,通过第一篇的快速使用,大家已经对diamond有了一个基本的了解.本次为大家带来的是diamond核心原理的介绍,主要包括server集群的数据同步.client获取server地址.client从server获取数据.client运行时感知server的数据变化,这四部分…
一.运行架构概览 Spark架构是主从模型,分为两层,一层管理集群资源,另一层管理具体的作业,两层是解耦的.第一层可以使用yarn等实现. Master是管理者进程,Worker是被管理者进程,每个Worker节点启动一个Worker进程,了解每台机器的资源有多少,并将这些信息汇报各Master进程. 每个提交的作业程序对应一个Driver和多个Executor,每个Executor执行具体的任务. 图 Spark基本运行架构 二.运行模式 Local 伪分布式 Standalone Yarn/…
RDD(Resilient Distributed Dataset) Spark源码:https://github.com/apache/spark   abstract class RDD[T: ClassTag](     @transient private var _sc: SparkContext,     @transient private var deps: Seq[Dependency[_]]   ) extends Serializable with Logging    …
RDD全称叫做弹性分布式数据集(Resilient Distributed Datasets),它是一种分布式的内存抽象,表示一个只读的记录分区的集合,它只能通过其他RDD转换而创建,为此,RDD支持丰富的转换操作(如map, join, filter, groupBy等),通过这种转换操作,新的RDD则包含了如何从其他RDDs衍生所必需的信息,所以说RDDs之间是有依赖关系的.基于RDDs之间的依赖,RDDs会形成一个有向无环图DAG,该DAG描述了整个流式计算的流程,实际执行的时候,RDD是…
Maven有一些核心的知识点需要了解,比如坐标.仓库.插件.生命周期等概念,这里将依次解释. 坐标 Maven以构件来组成基本的控制单元,而定义这个构件的标示,Maven给定义为“坐标”.坐标是Maven最基本的概念,它就像每个构件的身份证号码,有了它我们就可以在数以千万计的构件中定位任何一个我们感兴趣的构件. “坐标”这个词听起来很摸不着头脑,其实很简单,上一博客里面已经用到了,即下面这几个xml元素即组成了一个坐标 <groupId>com.company.maven01</grou…
1.Application     基于spark的用户程序,包含了一个Driver Program以及集群上中多个executor:     spark中只要有一个sparkcontext就是一个application:     启动一个spark-shell也是一个application,因为在启动shark-shell时就内置了一个sc(SparkContext的实例):   2.Driver Program     运行Application的main()函数并且创建SparkConte…
RDD: Resilient Distributed Dataset RDD的特点: 1.A list of partitions       一系列的分片:比如说64M一片:类似于Hadoop中的split:   2.A function for computing each split     在每个分片上都有一个函数去迭代/执行/计算它   3.A list of dependencies on other RDDs     一系列的依赖:RDDa转换为RDDb,RDDb转换为RDDc,那…
一.数据库提供者接口 /// <summary> /// 数据库提供者 /// </summary> public interface IDbProvider : IDisposable { /// <summary> /// 初始化数据库连接信息 /// </summary> /// <param name="dbConnInfo"></param> /// <returns></returns…
核心术语 RingBuffer(容器): 被看作Disruptor最主要的组件,然而从3.0开始RingBuffer仅仅负责存储和更新在Disruptor中流通的数据.对一些特殊的使用场景能够被用户(使用其他数据结构)完全替代. Sequence(槽位置): Disruptor使用Sequence来表示一个特殊组件处理的序号.和Disruptor一样,每个消费者(EventProcessor)都维持着一个Sequence.大部分的并发代码依赖这些Sequence值的运转,因此Sequence支持…