Linux内存管理-高端内存(二)】的更多相关文章

linux arm的高端内存映射(1) vmalloc 高端内存映射   与高端映射对立的是低端映射或所谓直接映射,内核中有关变量定义它们的它们的分界点,全局变量high_memory,该变量定义在mm/memory.c文件中(存在MMU的前提下),可见不区分体系结构,对于当前我手头的marvell的arm设备即对于arm体系结构,high_memory在初始化阶段的创建内存页表时初始化值,它的值就是:物理内存最后一个node的末尾,比如物理内存只有一个node,大小是256MB,再根据如下的算…
1 前景回顾 1.1 内核映射区 尽管vmalloc函数族可用于从高端内存域向内核映射页帧(这些在内核空间中通常是无法直接看到的), 但这并不是这些函数的实际用途. 重要的是强调以下事实 : 内核提供了其他函数用于将ZONE_HIGHMEM页帧显式映射到内核空间, 这些函数与vmalloc机制无关. 因此, 这就造成了混乱. 而在高端内存的页不能永久地映射到内核地址空间. 因此, 通过alloc_pages()函数以__GFP_HIGHMEM标志获得的内存页就不可能有逻辑地址. 在x86_32体…
1. 内核空间和用户空间 过去,CPU的地址总线只有32位, 32的地址总线无论是从逻辑上还是从物理上都只能描述4G的地址空间(232=4Gbit),在物理上理论上最多拥有4G内存(除了IO地址空间,实际内存容量小于4G),逻辑空间也只能描述4G的线性地址空间. 为了合理的利用逻辑4G空间,Linux采用了3:1的策略,即内核占用1G的线性地址空间,用户占用3G的线性地址空间.所以用户进程的地址范围从0~3G,内核地址范围从3G~4G,也就是说,内核空间只有1G的逻辑线性地址空间. 把内核空间和…
服务器体系与共享存储器架构 日期 内核版本 架构 作者 GitHub CSDN 2016-06-14 Linux-4.7 X86 & arm gatieme LinuxDeviceDrivers Linux内存管理 http://blog.csdn.net/vanbreaker/article/details/7579941 #1 前景回顾 前面我们讲到服务器体系(SMP, NUMA, MPP)与共享存储器架构(UMA和NUMA) #1.1 UMA和NUMA两种模型 共享存储型多处理机有两种模型…
1 固定映射 1.1 数据结构 linux高端内存中的临时内存区为固定内存区的一部分, 对于固定内存在linux内核中有下面描述 x86 arm arm64 arch/x86/include/asm/fixmap.h?v=4.7, line 67 arch/arm/include/asm/fixmap.h?v=4.7, line 11 arch/arm64/include/asm/fixmap.h?v=4.7, line 36 /* * Here we define all the compil…
在支持MMU的32位处理器平台上,Linux系统中的物理存储空间和虚拟存储空间的地址范围分别都是从0x00000000到0xFFFFFFFF,共4GB,但物理存储空间与虚拟存储空间布局完全不同.Linux运行在虚拟存储空间,并负责把系统中实际存在的远小于4GB的物理内存根据不同需求映射到整个4GB的虚拟存储空间中. 物理存储空间布局 Linux的物理存储空间布局与处理器相关,详细情况可以从处理器用户手册的存储空间分布表(memory map)相关章节中查到,我们这里只列出嵌入式处理器平台Linu…
1 高端内存与内核映射 尽管vmalloc函数族可用于从高端内存域向内核映射页帧(这些在内核空间中通常是无法直接看到的), 但这并不是这些函数的实际用途. 重要的是强调以下事实 : 内核提供了其他函数用于将ZONE_HIGHMEM页帧显式映射到内核空间, 这些函数与vmalloc机制无关. 因此, 这就造成了混乱. 而在高端内存的页不能永久地映射到内核地址空间. 因此, 通过alloc_pages()函数以__GFP_HIGHMEM标志获得的内存页就不可能有逻辑地址. 在x86_32体系结构总,…
1 内存中不连续的页的分配 根据上文的讲述, 我们知道物理上连续的映射对内核是最好的, 但并不总能成功地使用. 在分配一大块内存时, 可能竭尽全力也无法找到连续的内存块. 在用户空间中这不是问题,因为普通进程设计为使用处理器的分页机制, 当然这会降低速度并占用TLB. 在内核中也可以使用同样的技术. 内核分配了其内核虚拟地址空间的一部分, 用于建立连续映射. 在IA-32系统中, 前16M划分给DMA区域, 后面一直到第896M作为NORMAL直接映射区, 紧随直接映射的前896MB物理内存,在…
高端内存是指物理地址大于 896M 的内存.对于这样的内存,无法在“内核直接映射空间”进行映射. 为什么? 因为“内核直接映射空间”最多只能从 3G 到 4G,只能直接映射 1G 物理内存,对于大于 1G 的物理内存,无能为力. 实际上,“内核直接映射空间”也达不到 1G, 还得留点线性空间给“内核动态映射空间” 呢. 因此,Linux 规定“内核直接映射空间” 最多映射 896M 物理内存. 对于高端内存,可以通过 alloc_page() 或者其它函数获得对应的 page,但是要想访问实际物…
来此网址 https://ilinuxkernel.com/?p=1013 Linux内核地址映射模型x86 CPU采用了段页式地址映射模型.进程代码中的地址为逻辑地址,经过段页式地址映射后,才真正访问物理内存. 段页式机制如下图.   Linux内核地址空间划分 通常32位Linux内核地址空间划分0~3G为用户空间,3~4G为内核空间.注意这里是32位内核地址空间划分,64位内核地址空间划分是不同的.   Linux内核高端内存的由来 当内核模块代码或线程访问内存时,代码中的内存地址都为逻辑…