不妨设$R$是唯一可以看到的颜色,考虑一维序列的情况. 设$f[i][j][k][x][y]$表示考虑了前$i$个位置,第$i$个位置的高度是$j$,最高高度是$k$,已经用了$x$个$R$,$y$个非$R$的方案数,转移则是要么使自己的高度$+1$,要么考虑下一个位置. 由此可以在$O(n^5)$的时间内预处理出$g[i][j]$,表示一行用了$i$个$R$,$j$个非$R$的方案数. 对于二维的情况,设$dp[i][j][k]$表示考虑了前$i$行,用了$j$个$R$,$k$个非$R$的方案…