目前不是很懂..但主要意思是tf可以把一开始定义的参数,包括Weights和Biases保存到本地,然后再定义一个变量框架去加载(restore)这个参数,作为变量本身的参数进行后续的训练,具体如下: import numpy as np #Save to file W = tf.Variable([[1,2,3],[3,4,5]],dtype=tf.float32,name='weights') b = tf.Variable([[1,2,3]],dtype=tf.float32,name='…