文字描述 上一篇博客介绍了最小生成树(普里姆算法),知道了普里姆算法求最小生成树的时间复杂度为n^2, 就是说复杂度与顶点数无关,而与弧的数量没有关系: 而用克鲁斯卡尔(Kruskal)算法求最小生成树则恰恰相反.它的时间复杂度为eloge (e为网中边的数目),因此它相对于普里姆算法而言,适合于求边稀疏的网的最小生成树. 克鲁斯卡尔算法求最小生成树的步骤为:假设连通网N={V,{E}}, 则令最小生成树的初始状态为只有n个顶点而无边的非连通图 T=(V, {}}, 图中每个顶点自成一个连通分量…
克鲁斯卡尔算法(Kruskal's algorithm)是两个经典的最小生成树算法的较为简单理解的一个.这里面充分体现了贪心算法的精髓.大致的流程能够用一个图来表示.这里的图的选择借用了Wikipedia上的那个.很清晰且直观. 首先第一步,我们有一张图,有若干点和边 例如以下图所看到的: 第一步我们要做的事情就是将全部的边的长度排序,用排序的结果作为我们选择边的根据.这里再次体现了贪心算法的思想.资源排序,对局部最优的资源进行选择. 排序完毕后,我们领先选择了边AD. 这样我们的图就变成了 第…
克鲁斯卡尔算法(Kruskal's algorithm)它既是古典最低的一个简单的了解生成树算法. 这充分反映了这一点贪心算法的精髓.该方法可以通常的图被表示.图选择这里借用Wikipedia在.非常清晰直观. 首先第一步,我们有一张图.有若干点和边 例如以下图所看到的: 第一步我们要做的事情就是将全部的边的长度排序,用排序的结果作为我们选择边的根据.这里再次体现了贪心算法的思想.资源排序.对局部最优的资源进行选择. 排序完毕后,我们领先选择了边AD. 这样我们的图就变成了 第二步.在剩下的变中…
按照惯例,接下来是本篇目录: $1 什么是最小生成树? $2 什么是克鲁斯卡尔算法? $3 克鲁斯卡尔算法的例题 摘要:本片讲的是最小生成树中的玄学算法--克鲁斯卡尔算法,然后就没有然后了. $1 什么是最小生成树? •定义: 先引入一个定理:N个点用N-1条边连接成一个联通块,形成的图形只可能是树,没有别的可能: 根据这个定理,我们定义:在一个有N个点的图中,选出N-1条边出来,连接所有N个点,这N-1条边的边权之和最小的方案: •最小生成树之prim算法:   由于本蒟蒻还不会这个算法,所以…
算法描述 克鲁斯卡尔算法是一种贪心算法,因为它每一步都挑选当前最轻的边而并不知道全局路径的情况. 算法最关键的一个步骤是要判断要加入mst的顶点是否会形成回路,我们可以利用并查集的技术来做. 并查集的具体实现可参考:快速并查集 下面是对算法的一个简单描述: 这是一个非常简单易懂的算法,它面向边而不是顶点,所以在算法开始的时候,它要先找出所有的crossing edges,而为了高效的找到最轻边,用一个优先队列来维护这些crossing edges. /** * 找出所有crossing edge…
学习最小生成树算法之前我们先来了解下下面这些概念: 树(Tree):如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree):无向连通图G的一个子图如果是一颗包含G的所有顶点的树,则该子图称为G的生成树.生成树是连通图的极小连通子图.这里所谓极小是指:若在树中任意增加一条边,则将出现一条回路:若去掉一条边,将会使之变成非连通图. 最小生成树(Minimum Spanning Tree,MST):或者称为最小代价树Minimum-cost Spanning Tree…
最小生成树的一个作用,就是求最小花费.要在n个城市之间铺设光缆,主要目标是要使这 n 个城市的任意两个之间都可以通信,但铺设光缆的费用很高,且各个城市之间铺设光缆的费用不同,因此另一个目标是要使铺设光缆的总费用最低.这就需要找到带权的最小生成树. 主要思路:贪心,假设一共有五个点,按道理来讲,应该是先找到图中最小权值的两个点没然后对剩余的点进行遍历.但是也可以任意指定一个点.可以任意指定的原因就是,如果给定的信息可以构成最小生成树的话,那么最小生成树中一定有所有的点,那么这个点也一定在树上,所以…
我们在前面讲过的<克里姆算法>是以某个顶点为起点,逐步找各顶点上最小权值的边来构建最小生成树的.同样的思路,我们也可以直接就以边为目标去构建,因为权值为边上,直接找最小权值的边来构建生成树也是很自然的想法,只不过构建时要考虑是否会形成环而已,此时我们就用到了图的存储结构中的边集数组结构,如图7-6-7 假设现在我们已经通过邻接矩阵得到了边集数组edges并按权值从小到大排列如上图. 下面我们对着程序和每一步循环的图示来看: 算法代码:(改编自<大话数据结构>)  C++ Code …
一.核心思想 ​ 将输入的数据由小到大进行排序,再使用并查集算法(传送门)将每个点连接起来,同时求和. ​ 个人认为这个算法比较偏向暴力,有些题可能会超时. 二.例题 洛谷-P3366 题目地址:https://www.luogu.org/problemnew/show/P3366 这是一道非常好的克鲁斯卡尔算法的模板题. 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5…
链接 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5000,M<=200000) 接下来M行每行包含三个整数Xi.Yi.Zi,表示有一条长度为Zi的无向边连接结点Xi.Yi 输出格式: 输出包含一个数,即最小生成树的各边的长度之和:如果该图不连通则输出orz 输入输出样例 输入样例#1: 4 5 1 2 2 1 3 2 1 4 3 2 3 4 3 4 3 输出样例#1…