目标检测(3)-SPPNet】的更多相关文章

引言 先简单回顾一下R-CNN的问题,每张图片,通过 Selective Search 选择2000个建议框,通过变形,利用CNN提取特征,这是非常耗时的,而且,形变必然导致信息失真,最终影响模型的性能. 由此引出了一系列问题 问题1:形变耗时又损失信息,为什么要形变 很简单,因为CNN的输入必须是固定尺寸. 问题2:为什么CNN的输入必须固定尺寸 CNN主要由两部分组成,卷积层和全连接层,卷积层可以接受任意尺寸的图像,只是不同的输入卷积后的特征图尺寸不同,而全连接必须是固定的输入,所以任意尺寸…
Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2015. 继2014年的RCNN之后,Ross Girshick在15年推出Fast RCNN,构思精巧,流程更为紧凑,大幅提升了目标检测的速度.在Github上提供了源码. 之所以提出Fast R-CNN,主要是因为R-CNN存在以下几个问题: 训练分多步.通过上一篇博文我们知道R-CNN的训练先…
本文是使用深度学习进行目标检测系列的第二篇,主要介绍SPP-net:Spatial Pyramid Pooling in Deep ConvolutionalNetworks for Visual Recognition,即空间金字塔池化网络,用以解决卷积神经网络中固定输入大小的问题. 一.算法动机及尝试解决的问题 1. 传统的卷积神经网络的输入通常是一个固定大小(比如\(224x224\)的图像,因此当我们任意输入一张图像时需要对其进行缩放,作者认为这种手动的缩放可能会降低识别精度: 2. 在…
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 文章地址:https://arxiv.org/pdf/1406.4729.pdf 摘要 沿着上一篇RCNN的思路,我们继续探索目标检测的痛点,其中RCNN使用CNN作为特征提取器,首次使得目标检测跨入深度学习的阶段.但是RCNN对于每一个区域候选都需要首先将图片放缩到固定的尺寸(224*224),然后为每个区域候选提取CNN特征.容易看出这里…
目录 1. 前言 2. R-CNN 2.0 论文链接 2.1 概述 2.2 pre-training 2.3 不同阶段正负样本的IOU阈值 2.4 关于fine-tuning 2.5 对文章的一些思考 3. SPP-Net 3.0 论文链接 3.1 概述 3.2 一次性full-image卷积 3.3 Spatital Pyramid Pooling 3.4 多尺度训练与测试 3.5 如何将原图的proposal映射到到feature map上 3.6 SPP-Net的一些不足 4. Fast…
一.R-CNN的原理 R-CNN的全称是Region-CNN,它可以说是第一个将深度学习应用到目标检测上的算法.后面将要学习的Fast R-CNN.Faster R-CNN全部都是建立在R-CNN基础上的. 传统的目标检测方法大多以图像识别为基础.一般可以在图片上使用穷举法选出所有物体可能出现的区域框,对这些区域框提取特征并使用图像识别方法分类,得到所有分类成功的区域后,通过非极大值抑制(Non-maximum suppression,NMS)输出结果. R-CNN遵循传统目标检测的思路,同样采…
SPPNet论文翻译 <Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition> Kaiming He 摘要:         当前深度卷积神经网络(CNNs)都需要输入的图像尺寸固定(比如224×224).这种人为的需要导致面对任意尺寸和比例的图像或子图像时降低识别的精度(因为要经过crop/warp).本文给网络配上一个叫做“空间金字塔池化”(spatial pyramid pooling,…
SPP-Net网络结构分析 Author:Mr. Sun Date:2019.03.18 Loacation: DaLian university of technology 论文名称:<Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition> 摘要: 我们之前学习了基于深度学习进行目标检测的R-CNN算法,它虽然是一个开创性的理论,但是本身存在很多缺点,是有很多可以改进的地方的.本篇研究的Pa…
一. 导论 SPP-Net是何凯明在基于R-CNN的基础上提出来的目标检测模型,使用SPP-Net可以大幅度提升目标检测的速度,检测同样一张图片当中的所有目标,SPP-Net所花费的时间仅仅是RCNN的百分之一,而且检测的准确率甚至会更高.那么SPP-Net是怎么设计的呢?我们要想理解SPP-Net,先来回顾一下RCNN当中的知识吧.下图为SPP-Net的结构: 二. RCNN rcnn进行目标检测的框架如下: 因此RCNN的步骤如下: 1.将图像输入计算机当中 2.利用selective se…
今天准备再更新一篇博客,加油呀~~~ 系列博客链接: (一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html (二)目标检测算法之R-CNN https://www.cnblogs.com/kongweisi/p/10895055.html 本篇博客概述: 1.SPPNet的特点 1.1.映射(减少卷积计算.防止图片内容变形)     1.2.spp层:空间金字塔层(将大小不同的图片转换成固定大小的图片)  2.SPPNet总结 完…