计算LDA模型困惑度】的更多相关文章

http://www.52nlp.cn/lda-math-lda-%E6%96%87%E6%9C%AC%E5%BB%BA%E6%A8%A1 LDA主题模型评估方法--Perplexity http://www.52nlp.cn/lda-math-lda-%E6%96%87%E6%9C%AC%E5%BB%BA%E6%A8%A1 LDA-math-LDA 文本建模 http://www.iyunv.com/thread-59890-1-1.html 用python计算lda语言模型的困惑度并作图 h…
对于LDA模型,最常用的两个评价方法困惑度(Perplexity).相似度(Corre). 其中困惑度可以理解为对于一篇文章d,所训练出来的模型对文档d属于哪个主题有多不确定,这个不确定成都就是困惑度.困惑度越低,说明聚类的效果越好. 计算公式     分母是测试集中所有单词之和,即测试集的总长度,不用排重.其中p(w)指的是测试集中每个单词出现的概率,计算公式如下.p(z|d)表示的是一个文档中每个主题出现的概率,就是程序中的.theta文件,p(w|z)表示的是词典中的每一个单词在某个主题下…
转载请注明:电子科技大学EClab——落叶花开http://www.cnblogs.com/nlp-yekai/p/3816532.html 困惑度一般在自然语言处理中用来衡量训练出的语言模型的好坏.在用LDA做主题和词聚类时,原作者D.Blei就是采用了困惑度来确定主题数量.文章中的公式为: perplexity=exp^{ - (∑log(p(w))) / (N) } 其中,P(W)是指的测试集中出现的每一个词的概率,具体到LDA的模型中就是P(w)=∑z p(z|d)*p(w|z)[z,d…
LDA(Latent Dirichlet Allocation)是一种文档主题生成模型,最近看了点资料,准备使用python实现一下.至于数学模型相关知识,某度一大堆,这里也给出之前参考过的一个挺详细的文档lda算法漫游指南 这篇博文只讲算法的sampling方法python实现. 完整实现项目开源python-LDA lda模型变量申请及初始化 # #伪代码 # 输入:文章集合(分词处理后),K(类的个数) 输出:已经随机分派了一次的lda模型 begin 申请几个统计量: p 概率向量 维度…
什么是LDA? LDA是基于贝叶斯模型的,涉及到贝叶斯模型离不开“先验分布”,“数据(似然)”和"后验分布"三块.贝叶斯相关知识:先验分布 + 数据(似然)= 后验分布. 贝叶斯模型通过数学和概率的形式表达, 设 似然(数据)为二项分布: 其中p我们可以理解为好人的概率,k为好人的个数,n为好人坏人的总数.似然(数据)较为容易理解,但是先验分布较难,因为要求先验分布和数据(似然)对应的二项分布集合后,得到的后验分布在后面还可以作为先验分布!即是说,我们希望先验分布和后验分布的形式应该是…
得知李航老师的<统计学习方法>出了第二版,我第一时间就买了.看了这本书的目录,非常高兴,好家伙,居然把主题模型都写了,还有pagerank.一路看到了马尔科夫蒙特卡罗方法和LDA主题模型这里,被打击到了,满满都是数学公式.LDA是目前为止我见过最复杂的模型了. 找了培训班的视频看,对LDA模型有了大致的认识.下面总结一点东西. 1.LDA与PLSA的联系 LDA模型和PLSA的联系非常紧密,都是概率模型(LSA是非概率模型),是利用概率生成模型对文本集合进行主题分析的无监督学习方法. 不同在于…
“LDA(Latent Dirichlet Allocation)模型,模型主要解决文档处理领域的问题,比如文章主题分类.文章检测.相似度分析.文本分段和文档检索等问题.LDA主题模型是一个三层贝叶斯概率模型,包含词.主题.文档三层结构,文档到主题服从Dirichlet分布,主题到词服从多项式分布.它采用了词袋(Bag of Words)的方法,将每一篇文章视为一个词频向量,每一篇文档代表了一些主题所构成的概率分布,而每一个主题又代表了很多单词所构成的一个概率分布.利用LDA模型对用户参与的话题…
经过一年的忙碌,终于又到了寒假时间,小白又满状态复活了. 这一年小白学了很多的课程,但是一年下来,小白却感觉脑袋里没留下什么东西,貌似什么东西都在考完试的那一刹那全还回给老师了.这一年学习之余,小白仍然坚持着做案例,做大量不同的案例,虽然有一些案例做起来并没有太大的作用,但是至少可以熟练软件操作过程. 最近小白对于网格产生了一些困惑,正巧的是中午在食堂吃饭的时候碰到了小牛师兄,这一学期忙着上课,有一阵子没见着小牛师兄了. "嘿,师兄,好久不见了耶",小白上去打招呼. "是啊小…
torchnet+VGG16计算patch之间相似度 torch VGG16 similarity 本来打算使用VGG实现siamese CNN的,但是没想明白怎么使用torchnet对模型进行微调...所以只好把VGG的卷积层单独做一个数据预处理模块,后面跟一个网络,将两个VGG输出的结果输入该网络中,仅训练这个浅层网络. 数据:使用了MOTChallenge数据库MOT16-02中的pedestrian 代码: -- -------------------------------------…
linux环境下,没有首先安装python_Levenshtein,用法如下: 重点介绍几个该包中的几个计算字串相似度的几个函数实现. 1. Levenshtein.hamming(str1, str2) 计算汉明距离.要求str1和str2必须长度一致.是描述两个等长字串之间对应位置上不同字符的个数.如 2. Levenshtein.distance(str1, str2) 计算编辑距离(也成Levenshtein距离).是描述由一个字串转化成另一个字串最少的操作次数,在其中的操作包括插入.删…
关于Latent Dirichlet Allocation及Hierarchical LDA模型的必读文章和相关代码 转: http://andyliuxs.iteye.com/blog/1051743 LDA和HLDA: (1)D. M. Blei, et al., "Latent Dirichlet allocation," Journal of Machine Learning Research, vol. 3, pp. 993-1022, 2003. (2)T. L. Grif…
前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取http://t.cn/A6Zvjdun 1.简介 在机器学习领域,LDA是两个常用模型的简称:Linear Discriminant Analysis和Latent Dirichlet Allocation.本文的LDA是指Latent Dirichlet Allocation,它在主题模型中占有非常重…
题目描述: 对于不同的字符串,我们希望能有办法判断相似程度,我们定义了一套操作方法来把两个不相同的字符串变得相同,具体的操作方法如下: 1 修改一个字符,如把“a”替换为“b”. 2 增加一个字符,如把“abdd”变为“aebdd”. 3 删除一个字符,如把“travelling”变为“traveling”. 比如,对于“abcdefg”和“abcdef”两个字符串来说,我们认为可以通过增加和减少一个“g”的方式来达到目的.上面的两种方案,都只需要一次操作.把这个操作所需要的次数定义为两个字符串…
static void Main(string[] args) { Levenshtein(@"今天天气不错", @"今天的天气不错啊"); Console.Read(); } /// <summary> /// 字符串相似度计算 /// </summary> /// <param name="str1"></param> /// <param name="str2">…
""" 执行lda2vec.ipnb中的代码 模型LDA 功能:训练好后模型数据的可视化 """ from lda2vec import preprocess, Corpus import matplotlib.pyplot as plt import numpy as np # %matplotlib inline import pyLDAvis try: import seaborn except: pass # 加载训练好的主题-文档模型,…
#coding=utf8 import numpy as np import pandas as pd import re from gensim import corpora, models, similarities import gensim from nltk.corpus import stopwords df = pd.read_csv("./input/HillaryEmails.csv") # 原邮件数据中有很多Nan的值,直接扔了. df = df[['Id', 'E…
目录 更改elasticsearch的score评分 插件源码解读 脚步一 脚本二(fast-vector-distance) 部署 测试 创建索引 查询 版本说明 项目详细见github 参考文献 更改elasticsearch的score评分 在某些情况下,我们需要自定义score的分值,从而达到个性化搜索的目的.例如我们通过机器学习可以得到每个用户的特征向量.同时知道每个商品的特征向量,如何计算这两个特征向量的相似度?这个两个特征向量越高,评分越高,从而把那些与用户相似度高的商品优先推荐给…
Levenshtein Distance莱文斯坦距离定义: 数学上,两个字符串a.b之间的莱文斯坦距离表示为levab(|a|, |b|). levab(i, j) = max(i, j)  如果min(i, j) = 0; =  min(levab(i - 1, j) + 1, levab(i, j-1) + 1, levab(i - 1, j - 1) + 1)     (ai != bj) 否则其中ai != bj 是指示函数,当ai != bj 时为1, 否则为0. 核心公式就是下面:…
背景知识: (1)tf-idf 按照词TF-IDF值来衡量该词在该文档中的重要性的指导思想:如果某个词比较少见,但是它在这篇文章中多次出现,那么它很可能就反映了这篇文章的特性,正是我们所需要的关键词. tf–idf is the product of two statistics, term frequency and inverse document frequency.      //Various ways for determining the exact values of both…
gensim的LDA算法中很容易提取到每篇文章的主题分布矩阵,但是一般地还需要进一步获取每篇文章归属到哪个主题概率最大的数据,这个在检索gensim文档和网络有关文章后,发现竟然没有. 简单写了一下. #打印每篇文档最高概率主题 for i in lda.get_document_topics(corpus)[:]: listj=[] for j in i: listj.append(j[1]) bz=listj.index(max(listj)) #print(i[bz][0],i,listj…
废话不多说,直接开始 1.首先,导入所需的模块: import numpy as np import os import tensorflow as tf 关闭tensorflow输出的一大堆硬件信息 os.environ[' 2.写一个函数generate_data(),用来生成我们所需要的数据,这里使用的线性函数是y = 0.1*x + 0.3,具体解释见注释 def generate_data():#随机生成测试数据 num_points = 1000 vector_set = [] fo…
Dijkstra algorithm to compute the graph geodesic.Takes as input a polygonal mesh and performs a single source shortest path calculation. Dijkstra's algorithm is used. 用鼠标右键拾取平面网格上的点,观察输出路径: #!usrbinenv python import vtk def loadSTL(filenameSTL): read…
def get_ord_list(str): return [ord(i) for i in str] def calcu_approx(str1,str2): def dot(A,B): return (sum(a*b for a,b in zip(A,B))) def cosine_similarity(a,b): return dot(a,b) / ( (dot(a,a) **.5) * (dot(b,b) ** .5) ) ord_list1 = get_ord_list(str1) o…
神经概率语言模型,内容分为三块:问题,模型与准则,实验结果.[此节内容未完待续...] 1,语言模型问题 语言模型问题就是给定一个语言词典包括v个单词,对一个字串做出二元推断,推断其是否符合该语言表达习惯.也就是的取值为0或者为1. 概率语言模型放松了对取值的限制,让其在0~1之间取值(语言模型 v.s 概率语言模型),而且全部的字串的概率之和为1.维基百科对于概率语言模型的解释为:是借由一个概率分布,而指派概率给字词所组成的字串.可是须要注意的是直接对进行求其概率分布是不现实的,由于理论上这样…
在自然语言处理的任务中,拼音纠错.机器翻译等任务都需要对某个句子的下一个单词进行预测,或者评估某个句子的概率大小.例如预测如下句子的下一个单词: Please turn your home work... 在这个语境中,我们可能会预测下一个单词是over或是in,而不是预测为the或其他单词. 像这种对自然语言的句子进行建模,并赋予单词或句子概率的模型称为语言模型(LMs,Language Models).在这篇博客中将介绍一种最简单的语言模型-n元模型.n元模型对N个单词组成的序列进行建模,例…
SRILM是一个建立和使用统计语言模型的开源工具包,从1995年开始由SRI 口语技术与研究实验室(SRI Speech Technology and Research Laboratory)开发,现在仍然不断推出新版本,被广泛应用于语音识别.机器翻译等领域.这个工具包包含一组C++类库.一组进行语言模型训练和应用的可执行程序等.利用它可以非常方便地训练和应用语言模型.给定一组连续的词,调用SRILM提供的接口,可以得到这组词出现的概率. http://www.jianshu.com/p/5b1…
先看一下语言模型的输出格式 \data\ ngram = ngram = ngram = \-grams: -5.24036 'cause -0.2084827 -4.675221 'em -0.221857 -4.989297 'n -0.05809768 -5.365303 'til -0.1855581 -2.111539 </s> 0.0 - <s> -0.7736475 -1.128404 <unk> -0.8049794 -2.271447 a -0.616…
1.简介 SRILM是通过统计方法构建语言模型,主要应用于语音识别,文本标注和切分,以及机器翻译等. SRILM支持语言模型的训练和评测,通过训练数据得到语言模型,其中包括最大似然估计及相应的平滑算法:评测是计算测试集的困惑度.其最基础和最核心的模块是n-gram模块,包括两个工 具:ngram-count和ngram,被用来估计语言模型和计算语言模型的困惑度. 2.使用方法 (1).语料初始化 a.数据清洗        b.分词(以空格划分)        c.将数据分为训练集和测试集 (2…
https://zhuanlan.zhihu.com/p/73723782 请复制粘贴到markdown 查看器查看! Do Neural Dialog Systems Use the Conversation History Effectively? An Empirical Study ACL2019 Chinnadhurai Sankar, Sandeep Subramanian, Christopher Pal, Sarath Chandar, [Yoshua Bengio] https…
”云”或者’云滴‘是云模型的基本单元,所谓云是指在其论域上的一个分布,可以用联合概率的形式(x, u)来表示 云模型用三个数据来表示其特征 期望:云滴在论域空间分布的期望,一般用符号Εx表示. 熵:不确定程度,由离散程度和模糊程度共同决定,一般用En表示. 超熵: 用来度量熵的不确定性,既熵的熵,一般用符号He表示. 云有两种发生器:正向云发生器和逆向云发生器,分别用来生成足够的云滴和计算云数字特征(Ex, En,He). 正向云发生器: 1.生成以En为期望,以He^2为方差的正态随机数En’…