一.总述 线性回归算法属于监督学习的一种,主要用于模型为连续函数的数值预测. 过程总得来说就是初步建模后,通过训练集合确定模型参数,得到最终预测函数,此时输入自变量即可得到预测值. 二.基本过程 1.初步建模.确定假设函数h(x)(最终预测用) 2.建立价值函数J(θ)(也叫目标函数.损失函数等,求参数θ用) 3.求参数θ.对价值函数求偏导(即梯度),再使用梯度下降算法求出最终参数θ值 4.将参数θ值代入假设函数 三.约定符号 x:自变量,即特征值 y:因变量,即结果 h(x):假设函数 J(θ…