Eureka 参数调优】的更多相关文章

1.常见问题 1.为什么服务下线了,Eureka Server接口返回的信息还会存在? 2.为什么服务上线了,Eureka Client不能及时获取到? 3.为什么偶尔会有如下提示: EMERGENCY! EUREKA MAY BE INCORRECTLY CLAIMING INSTANCES ARE UP WHEN THEY'RENOT. RENEWALS ARE LESSER THAN THRESHOLD AND HENCE THE INSTANCES ARE NOT BEING EXPIR…
常见问题 为什么服务下线了,Eureka Server 接口返回的信息还会存在. 为什么服务上线了,Eureka Client 不能及时获取到. 为什么有时候会出现如下提示: EMERGENCY! EUREKA MAY BE INCORRECTLY CLAIMING INSTANCES ARE UP WHEN THEY’RE NOT. RENEWALS ARE LESSER THAN THRESHOLD AND HENCE THE INSTANCES ARE NOT BEING EXPIRED…
摘要: 1 shuffle原理 1.1 mapreduce的shuffle原理 1.1.1 map task端操作 1.1.2 reduce task端操作 1.2 spark现在的SortShuffleManager 2 Shuffle操作问题解决 2.1 数据倾斜原理 2.2 数据倾斜问题发现与解决 2.3 数据倾斜解决方案 3 spark RDD中的shuffle算子 3.1 去重 3.2 聚合 3.3 排序 3.4 重分区 3.5 集合操作和表操作 4 spark shuffle参数调优…
摘要: 1.所需工具 2.详细过程 3.验证 4.使用指南 5.参数调优 内容: 1.所需工具 我用到了git(内含git bash),Visual Studio 2012(10及以上就可以),xgboost源码(0.4版本),java 环境还需要maven 附:Visual Studio 2012下载 xgboost源码(0.4版本)链接:http://pan.baidu.com/s/1i4Kem5B 密码:ieox 2.详细过程 在windows文件里面打开sln文件 , 选release…
libsvm中有进行参数调优的工具grid.py和easy.py可以使用,这些工具可以帮助我们选择更好的参数,减少自己参数选优带来的烦扰. 所需工具:libsvm.gnuplot 本机环境:Windows7(64 bit) ,Python3.5 1.相关程序的下载和安装: 1.1.下载libsvm,我用的是libsvm-3.18.zip,下载后直接解压到任意位置,我解压到C:\libsvm-3.18下. 1.2.下载python,我下的是python-3.5.msi,双击该文件安装到默认位置,我…
摘要 1.num-executors 2.executor-memory 3.executor-cores 4.driver-memory 5.spark.default.parallelism 6.spark.storage.memoryFraction 7.spark.shuffle.memoryFraction 8.total-executor-cores 9.资源参数参考示例 内容 1.num-executors 参数说明:该参数用于设置Spark作业总共要用多少个Executor进程来…
Linux内核 TCP/IP.Socket参数调优 2014-06-06  Harrison....   阅 9611  转 165 转藏到我的图书馆   微信分享:   Doc1: /proc/sys/net目录 所有的TCP/IP参数都位于/proc/sys/net目录下(请注意,对/proc/sys/net目录下内容的修改都是临时的,任何修改在系统重启后都会丢失),例如下面这些重要的参数: 参数(路径+文件) 描述 默认值 优化值 /proc/sys/net/core/rmem_defau…
JVM参数调优 JVM参数调优是一个很头痛的问题,可能和应用有关系,下面是本人一些调优的实践经验,希望对读者能有帮助,环境LinuxAS4,resin2.1.17,JDK6.0,2CPU,4G内存,dell2950服务器. 一:串行垃圾回收,也就是默认配置,完成10万request用时153秒,JVM参数配置如下$JAVA_ARGS .= " -Dresin.home=$SERVER_ROOT -server -Xms2048M -Xmx2048M -Xmn512M -XXermSize=256…
xgboost入门非常经典的材料,虽然读起来比较吃力,但是会有很大的帮助: 英文原文链接:https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/ 原文地址:Complete Guide to Parameter Tuning in XGBoost (with codes in Python) 译注:文内提供的代码和运行结果有一定差异,可以从这里下…
XGBoost参数调优完全指南(附Python代码):http://www.2cto.com/kf/201607/528771.html https://www.zhihu.com/question/41354392 [以下转自知乎] https://www.zhihu.com/question/45487317 为什么xgboost/gbdt在调参时为什么树的深度很少就能达到很高的精度? XGBoost除去正则和并行的优化,我觉得和传统GBDT最核心的区别是:1. 传统GBDT的每颗树学习的是…