GCD int gcd(int a, int b) { return b == 0 ? a : gcd(b, a%b); } EXGCD void ex_gcd(int a, int b, int &x, int &y) { if (b == 0) { x = 1; y = 0; return; } else { ex_gcd(b, a%b, x, y); int t = x; x = y; y = t - (a / b)*y; } }…
自己写的一个分数模板,在运算操作时进行了防溢出的优化: ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; } ll lcm(ll a, ll b) { return a / gcd(a,b) * b; } struct divi { ll a = ,b = ; }; divi simdiv(divi a) { ll i; divi divn = a; ll k = gcd(a.a,a.b); divn.a /= k; divn.b /= k; )…
Bryce1010模板 /**** *扩展欧几里得算法 *返回d=gcd(a,b),和对应等式ax+by=d中的x,y */ long long extend_gcd(long long a,long long b,long long &x,long long &y) { if(a==0&&b==0)return -1;//无最大公约数 if(b==0){x=1;y=0;return a;} long long d=extend_gcd(b,a%b,y,x); y-=a/b…
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 17212 Accepted Submission(s): 6637 Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x,…
long long gcd(long long b,long long c)//计算最大公约数{ return c==0?b:gcd(c,b%c);} long long lcm(long long b,long long c)//计算最小公倍数{ return b * c/ gcd(b, c); }…