摘抄知乎上一段有趣的话:     如果你出门问别人『学习SLAM需要哪些基础?』之类的问题,一定会有很热心的大哥大姐过来摸摸你的头,肩或者腰(不重要),一脸神秘地从怀里拿出一本比馒头还厚的<Multiple View Geometry>或<State Estimation For Robotics>或 <An Invitation to 3D Computer Vision>塞给你.然后告诉你,只要潜心修炼两年,一定会--     扯淡!SLAM是一个工程,不是一门课或…
非滤波单目视觉slam 主要分为以下8部分 数据类型 数据关联 初始化 位姿估计 地图维护 地图生成 失效恢复 回环检测 数据类型 直接法(稠密,半稠密) 基本原理是亮度一致性约束,\(J(x,y) = I(x + u(x,y)+ v(x,y))\) ,x,y是图像的像素坐标,u,v是同一场景下的两幅图像I,J的对应点的像素偏移. 起源是光流法,由于使用了图像中大部分的信息,对纹理差的部分鲁棒性比直接法好,但是计算量也加大,要并行化计算. 间接法 就是特征点匹配,一般要考虑到特征点的鲁棒性,对光…
SLAM涉及的知识面很广,我简单总结了 “SLAM知识树” 如下所示: (公众号菜单栏回复 “树” 可获得清晰版) 可以看到涉及的知识面还是比较广的.这里放出一张SLAM圈子里喜闻乐见的表达悲喜交加心情的漫画图,大家可以感受一下: 每个学SLAM的小伙伴可以说都是冒着“头顶凉凉”的巨大风险,勇气可嘉.下面结合SLAM知识树展开具体说说. 编程环境首先先说电脑环境和编程. 1.电脑环境:Linux环境,推荐Ubuntu16.04. 有人问Windows行不行?这么说吧,如果你是一位SLAM领域的大…
SLAM综述性特别是原理讲述比较浅显易懂的的资料比较少,相对比较知名的是<SLAM for Dummies>,但中文资料相对较少,这里就简单概述一下<SLAM for Dummies>的核心内容. (一) SLAM for Dummies中SLAM的基本模块 SLAM的基本组成包括:地标(Landmark)抽取.数据关联.系统状态变量估计.基于观测值得系统状态变量更新,以及地标更新.SLAM for Dummies主要描述了2D场景下的地图构建与机器人定位,这里的状态变量主要是指机…
Karto_slam算法是一个Graph based SLAM算法.包括前端和后端.关于代码要分成两块内容来看. 一类是OpenKarto项目,是最初的开源代码,包括算法的核心内容: https://github.com/skasperski/OpenKarto.git  之后作者应该将该项目商业化了:https://www.kartorobotics.com/ 作者是这样说的: “When I worked at SRI, we developed a 2D SLAM mapping syst…
目前可以从很多地方得到RBPF的代码,主要看的是Cyrill Stachniss的代码,据此进行理解. Author:Giorgio Grisetti; Cyrill Stachniss  http://openslam.org/ https://github.com/Allopart/rbpf-gmapping   和文献[1]上结合的比较好,方法都可以找到对应的原理. https://github.com/MRPT/mrpt MRPT中可以采用多种扫描匹配的方式,可以通过配置文件进行配置.…
开源方案 传感器形式 地址链接 MonoSLAM 单目 https://github.com/hanmekim/SceneLib2  PTAM 单目  http://www.robots.ox.ac.uk/~gk/PTAM/ ORB-SLAM  单目为主 http://webdiis.unizar.es/~raulmur/orbslam/ ORB-SLAM2 单目 https://github.com/raulmur/ORB_SLAM2 LSD-SLAM 单目为主 http://vision.i…
博客转载自:https://www.leiphone.com/news/201612/lvDXqY82OGNqEiyl.html 雷锋网(公众号:雷锋网)按:本文作者SLAMTEC(思岚科技公号slamtec-sh)技术顾问,专注SLAM及相关传感器研发应用. 我们先来看看SLAM与路径规划的关系 实际上,SLAM算法本身只是完成了机器人的定位和地图构建两件事情,与我们说的导航定位并不是完全等价的.这里的导航,其实是SLAM算法做不了的.它在业内叫做运动规划(Motion Planning).…
http://geek.csdn.net/news/detail/202128 作者:高翔,张涛,刘毅,颜沁睿. 编者按:本文节选自图书<视觉SLAM十四讲:从理论到实践>,系统介绍了视觉SLAM(同时定位与地图构建)所需的基本知识与核心算法,既包括数学理论基础,又包括计算机视觉的算法实现.此外,还提供了大量的实例代码供读者学习研究,从而更深入地掌握这些内容. 当前的开源方案 本文将带着读者去看看现有的SLAM方案能做到怎样的程度.特别地,我们重点关注那些提供开源实现的方案.在SLAM研究领域…
在<机器人手册> 第2卷,这本书里面,第23章讲述了:三维视觉和基于视觉的实时定位于地图重建.在第37章里面,讲述了 同时定位与建图.指出了SLAM的三种基本方法. 一种是EKF的方法,但由于性能的约束,逐渐变得非主流:第二种基于图表示,成功使用稀疏非线性优化方法解决SLAM问题,成为主要方法:第三种也是成为粒子滤波器的非参数统计滤波技术,是在线SLAM的一种主流方法. VSLAM扫盲之旅 作为三维重建-SLAM的入门资料汇总:VSLAM扫盲之旅 ICCV研讨会:实时SLAM的未来以及深度学习…