luogu1168 中位数】的更多相关文章

中位数 题目大意:输出读入的前2*k+1个数的中位数.一共有n个数,按照读入顺序. 注释:$1\le n \le 10^9$. 想法:这是优先队列的一个应用qwq.我们弄两个堆.小根堆和大根堆,保证:大根堆中的任意一个数都小于小根堆,而且大根堆中的元素个数始终比小根堆大且只大1.最后我们只需要输出大根堆的对顶即可.具体地:我们对于每一个新读入的元素和原本合法的大.小根堆进行操作,将当前元素和大根堆对顶进行比较,如果当前元素大于大根堆对顶,我们就将其扔进小根堆,反之,扔进大根堆,显然是正确的.在维…
题目大意 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[3], -, A[2k - 1]的中位数.即前1,3,5,--个数的中位数. 题解 要找到中位数我们需要的序列是单调不减的,故可以用二叉平衡树解决. #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int MAX_NODE = 100…
Description Luogu1168 Solution 一种神奇的做法:开一个大根堆和小根堆,保证大根堆比小根堆多1个元素,且大根堆堆顶元素比小根堆堆顶元素小,那么大根堆堆顶就是中位数.插入的时候用交换堆顶元素的方法维护一下这个性质就行. Code #include <cstdio> #include <queue> const int N = 100010; int n, a[N]; std::priority_queue<int> big; std::prio…
Median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle value. Examples: [2,3,4] , the median is 3 [2,3], the median is (2 + 3) / 2 = 2.5 Design a d…
There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). 这道题让我们求两个有序数组的中位数,而且限制了时间复杂度为O(log (m+n)),看到这个时间复杂度,自然而然的想到了应该使用二分查找法来求解.但是这道题…
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/转载请注明出处,侵权必究,保留最终解释权! Description 给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b.中位数是指把所有元素从小到大排列后,位于中间的数. Input 第一行为两个正整数n和b ,第二行为1~n 的排列. Output 输出一个整数,即中位数为…
要得到一组数据的中位数(例如某个地区或某家公司的收入中位数),我们首先要将这一任务细分为3个小任务: 将数据排序,并给每一行数据给出其在所有数据中的排名. 找出中位数的排名数字. 找出中间排名对应的值. 举例说明: 建表语句: CREATE TABLE `income` ( `name` VARCHAR(10) NOT NULL DEFAULT '', `income` INT(11) NOT NULL DEFAULT '0' ) ENGINE = InnoDB DEFAULT CHARSET…
题目描述 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[2], …, A[2k - 1]的中位数.[color=red]即[/color]前1,3,5,……个数的中位数. 输入输出格式 输入格式: 输入文件median.in的第1行为一个正整数N,表示了序列长度. 第2行包含N个非负整数A[i] (A[i] ≤ 10^9). 输出格式: 输出文件median.out包含(N + 1) / 2行,第i行为A[1], A[2], …, A…
题目大意 给定一个长度为n的正整数序列,令修改一个数的代价为修改前后两个数的绝对值之差,求用最小代价将序列转换为不减序列. 其中,n满足小于500000,序列中的正整数小于10^9 题解(引自mzx神犇的题解) 本次test跪0了,尴尬 解法1(40分) 考虑dp 设到第i个数为止,序列中数全部<=j的最小代价为f[i][j] 可以推出f[i][j]=min{f[i-1][j]+|ai-j|,f[i][j-1]} 解法2(60分) 是对于第一个dp思路的优化 既然数字是固定的,可以离散化,降低空…
思路:设现在可用区间在nums1是[s1,t1),nums2:[s2,t2) 1.当一个数组可用区间为0的时候,由于另一个数组是已经排过序的,所以直接可得 当要取的是最小值或最大值时,也直接可得 2.明显两个数组总长度为偶数的时候需要取最中间两个元素/2.0,长度为奇数时,只需要求最中间那个.所以只需要分别求出最多两个元素,分别是 (findKthElement(0,t1,0,t2,(t1 + t2)/2) 和 findKthElement(0,t1,0,t2,(t1 + t2)/2 + 1)…