异常值(outlier)】的更多相关文章

机器学习_深度学习_入门经典(博主永久免费教学视频系列) https://study.163.com/course/courseMain.htm?courseId=1006390023&share=2&shareId=400000000398149 转载https://blog.csdn.net/weixin_42608414/article/details/89092501 作者:Susan Li ,原文:https://towardsdatascience.com/time-serie…
很多刚进入实验室的同学对实验数据的标准差(SD)与标准误(SE)的含义搞不清,不知道自己的数据报告到底该用SD还是SE.这里对这两个概念进行一些介绍. 标准差(SD)强调raw data的Variation,而标准误(SE)强调平均数的可信程度.例如在毒理学实验中,可能少数个体出现不良反应也很重要,需要给予关注,因此这时SD比SE更重要.而在一般的生物实验中,如果我们主要关心的不是少数样本的特殊反应(即个别情况),我们主要关心的是整个群体对的平均状况,需要了解整体数据的可信度时,SE比SD更重要…
Decision Tree:Analysis 大家有没有玩过猜猜看(Twenty Questions)的游戏?我在心里想一件物体,你可以用一些问题来确定我心里想的这个物体:如是不是植物?是否会飞?能游泳不?当你问完这些问题后,你就能得到这个物体的特征,然后猜出我心里想象的那个物体,看是否正确. 这个游戏很简单,但是蕴含的思想却是质朴的.每个问题都会将范围减少,直到特征显现,内蕴的思想就是Decision Tree算法.判定树(Decision Tree)算法是机器学习中很重要的一种算法,有文章声…
http://blog.csdn.net/xidiancoder/article/details/71341345 平均值 平均值的概念很简单:所有数据之和除以数据点的个数,以此表示数据集的平均大小:其数学定义为 以下面10个点的CPU使用率数据为例,其平均值为17.2. 14 31 16 19 26 14 14 14 11 13 1 方差.标准差 方差这一概念的目的是为了表示数据集中数据点的离散程度:其数学定义为: 标准差与方差一样,表示的也是数据点的离散程度:其在数学上定义为方差的平方根:…
异常值检测 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到程序: 1. LX终端(LXTerminal): Linux命令行终端,打开后会进入Bash环境,可以使用Linux命令2. GVim:非常好用的编辑器,最简单的用法可以参考课程[Vim编辑器](http://www.shiyanlou.com/courses/2)3. R:在命令行输入‘R’进入交互式环…
1.介绍 它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,即支持向量机的学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解. 2.求解过程 1.数据分类—SVM引入 假设在一个二维平面中有若干数据点(x,y),其被分为2组,假设这些数据线性可分,则需要找到一条直线将这两组数据分开.这个将两种数据分割开的直线被称作分隔超平面(separating hyperplane),当其在更加高维的空间中为超平面,在当前的二维平面为一条直线. 这样的直线可能存在很多条,则我们…
一.值域(Range) Range = Max - Min 受异常值(Outliers)影响 二.四分位差(IQR) 四分位距(interquartile range, IQR),又称四分差.是描述统计学中的一种方法,以确定第三四分位数和第一四分位数的区别(即Q1~Q3 的差距). 三.异常值(Outlier) 异常值的常用定义:Outlier < Q1 - 1.5IQR OR > Q3 + 1.5IQR 可视化--Box Plots(箱线图) & Whisker(盒须图) IQR的不…
一.决策树(类型.节点特征选择的算法原理.优缺点.随机森林算法产生的背景) 1.分类树和回归树 由目标变量是离散的还是连续的来决定的:目标变量是离散的,选择分类树:反之(目标变量是连续的,但自变量可以是分类的或数值的),选择回归树: 树的类型不同,节点分裂的算法和预测的算法也不一样: 分类树会使用基于信息熵或者gini指数的算法来划分节点,然后用每个节点的类别情况投票决定预测样本的分类:回归树会使用最大均方误差来划分节点,然后用每个节点中样本的均值作为测试样本的预测值: 2.决策树的算法:ID3…
1.概述 前面介绍模板匹配的时候已经提到模板匹配时一种基于灰度的匹配方法,而基于特征的匹配方法有FAST.SIFT.SURF等.上面两篇文章已经介绍过使用Surf算法进行特征点检測以及使用暴力匹配(BruteForceMatcher)和近期邻匹配(FLANN)两种匹配方法.接下来将更深一步介绍利用Surf检測到的特征点以及匹配对进行图像匹配. 利用Surf算法进行图像匹配其一般流程为:检測物体特征点->计算特征点描写叙述子->使用BurteForceMatcher或FLANN进行特征点匹配-&…
Why Slack? 为了处理异常值(outlier). 前面推导的svm形式, 是要求严格地全部分对, 基于该情况下, 在margin 的边界线 线上的点, 只能是支持向量. \(min_w \ \frac {1}{2} ||w||^2 \\ s.t. \ y_i(w^Tx_i + b) >= 1\) 而现实生活中, 往往数据是没有那么完美. 于是这样严格找到的 margin 可能就因为异常值 而 不是最优的(非最优就是没有 很好地 将2波数据给分开).则相应的处理方式,就是适当允许一些点(异…