基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 X轴上有N个点,每个点除了包括一个位置数据X[i],还包括一个权值W[i].点P到点P[i]的带权距离 = 实际距离 * P[i]的权值.求X轴上一点使它到这N个点的带权距离之和最小,输出这个最小的带权距离之和.Input第1行:点的数量N.(2 <= N <= 10000)第2 - N + 1行:每行2个数,中间用空格分隔,分别是点的位置及权值.(-10^5 <= X[i] <= 10^5,1 &…
X轴上有N个点,每个点除了包括一个位置数据X[i],还包括一个权值W[i].点P到点P[i]的带权距离 = 实际距离 * P[i]的权值.求X轴上一点使它到这N个点的带权距离之和最小,输出这个最小的带权距离之和.   Input 第1行:点的数量N.(2 <= N <= 10000) 第2 - N + 1行:每行2个数,中间用空格分隔,分别是点的位置及权值.(-10^5 <= X[i] <= 10^5,1 <= W[i] <= 10^5) Output 输出最小的带权距…
1110 距离之和最小 V3 基准时间限制:1 秒 空间限制:131072 KB X轴上有N个点,每个点除了包括一个位置数据X[i],还包括一个权值W[i].该点到其他点的带权距离 = 实际距离 * 权值.求X轴上一点使它到这N个点的带权距离之和最小,输出这个最小的带权距离之和. Input 第1行:点的数量N.(2 <= N <= 10000) 第2 - N + 1行:每行2个数,中间用空格分隔,分别是点的位置及权值.(-10^5 <= X[i] <= 10^5,1 <= …
1110 距离之和最小 V3 1 秒 131,072 KB 40 分 4 级题 X轴上有N个点,每个点除了包括一个位置数据X[i],还包括一个权值W[i].点P到点P[i]的带权距离 = 实际距离 * P[i]的权值.求X轴上一点使它到这N个点的带权距离之和最小,输出这个最小的带权距离之和. 收起 输入 第1行:点的数量N.(2 <= N <= 10000) 第2 - N + 1行:每行2个数,中间用空格分隔,分别是点的位置及权值.(-10^5 <= X[i] <= 10^5,1…
1096 距离之和最小 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 X轴上有N个点,求X轴上一点使它到这N个点的距离之和最小,输出这个最小的距离之和.   Input 第1行:点的数量N.(2 <= N <= 10000) 第2 - N + 1行:点的位置.(-10^9 <= P[i] <= 10^9) Output 输出最小距离之和 Input示例 5 -1 -3 0 7 9 Output示例 20[分析]:注意LL,距离a…
题目: 在一条直线上,与两个点距离之和最小的点,是怎样的点? 很容易想到,所求的点在这两个已知点的中间,因为两点之间距离最短. 在一条直线上,与三个点距离之和最小的点,是怎样的点? 由两个点的规律,我们可以想到,所求点一定夹在这些点中间. 例如 :  -3    0    10 我们先试探一下 取点0:  |0-3|+|0-0|+|0-10| = 3+0+10 = 13 取点-1: |-1-(-3)|+|-1-0|+|-1-10| = 2+1+11 = 3+1+10 = 14 取点1 :   …
1108 距离之和最小 V2基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注三维空间上有N个点, 求一个点使它到这N个点的曼哈顿距离之和最小,输出这个最小的距离之和.点(x1,y1,z1)到(x2,y2,z2)的曼哈顿距离就是|x1-x2| + |y1-y2| + |z1-z2|.即3维坐标差的绝对值之和.Input第1行:点的数量N.(2 <= N <= 10000)第2 - N + 1行:每行3个整数,中间用空格分隔,表示点的位置.(-10^9…
基准时间限制:1 秒 空间限制:131072 KB 分值: 40  X轴上有N个点,每个点除了包括一个位置数据X[i],还包括一个权值W[i].该点到其他点的带权距离 = 实际距离 * 权值.求X轴上一点使它到这N个点的带权距离之和最小,输出这个最小的带权距离之和.   Input 第1行:点的数量N.(2 <= N <= 10000) 第2 - N + 1行:每行2个数,中间用空格分隔,分别是点的位置及权值.(-10^5 <= X[i] <= 10^5,1 <= W[i] …
[题解] 很显然在一条坐标轴上到各个点距离之和最小的点就是它们的中位数.怎么证明呢?我们假设现在找的某个点x左边有a个点,右边有b个点(a>b).我们把x向左移动d个单位,并保证x左边依然有a个点,右边依然有b个点,那么现在距离之和减小了ad-bd.  那也就是说,x左右的点数不一样,我们可以通过移动x找到更优的解.那么满足距离之和最小的x的左右两边的点数必须相等,中位数是满足这个条件的. n维空间上的曼哈顿距离最小,就是把各个坐标轴分开考虑即可. #include<cstdio> #i…
基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 X轴上有N个点,求X轴上一点使它到这N个点的距离之和最小,输出这个最小的距离之和.   Input 第1行:点的数量N.(2 <= N <= 10000) 第2 - N + 1行:点的位置.(-10^9 <= P[i] <= 10^9) Output 输出最小距离之和 Input示例 5 -1 -3 0 7 9 Output示例 20 n<=10000 暴力!!屠龙宝刀点击就送 #includ…