1.bootstrap   在原始数据的范围内作有放回的再抽样M个, 样本容量仍为n,原始数据中每个观察单位每次被抽到的概率相等, 为1/n , 所得样本称为Bootstrap样本.于是可得到参数θ的一个估计值θ^(b),这样重复若干次,记为B .为了可以避免一些误差点对少量树的决策影响. 2.决策树 : 信息熵: Ent(D) = - ΣPk*logPk, Ent(D)的值越小,则D的纯度越高           信息增益: ID3中使用, 存在过拟合的情况, 避免过拟合的方法,1. 通过si…
已经好久没写了,正好最近需要做分享所以上来写两篇,这篇是关于决策树的,下一篇是填之前SVM的坑的. 参考文献: http://stats.stackexchange.com/questions/5452/r-package-gbm-bernoulli-deviance/209172#209172 http://stats.stackexchange.com/questions/157870/scikit-binomial-deviance-loss-function http://scikit-…
一.决策树模型组合 单决策树C4.5由于功能太简单,并且非常容易出现过拟合的现象,于是引申出了许多变种决策树,就是将单决策树进行模型组合,形成多决策树,比较典型的就是迭代决策树GBRT和随机森林RF. 在最近几年的paper上,如iccv这种重量级会议,iccv 09年的里面有不少文章都是与Boosting和随机森林相关的.模型组合+决策树相关算法有两种比较基本的形式:随机森林RF与GBDT,其他比较新的模型组合+决策树算法都是来自这两种算法的延伸.        核心思想:其实很多"渐进梯度&…
一.CART分类与回归树 资料转载: http://dataunion.org/5771.html        Classification And Regression Tree(CART)是决策树的一种,并且是非常重要的决策树,属于Top Ten Machine Learning Algorithm.顾名思义,CART算法既可以用于创建分类树(Classification Tree),也可以用于创建回归树(Regression Tree).模型树(Model Tree),两者在建树的过程稍…
集成学习之Boosting -- AdaBoost原理 集成学习之Boosting -- AdaBoost实现 集成学习之Boosting -- Gradient Boosting原理 集成学习之Boosting -- Gradient Boosting实现 上一篇介绍了AdaBoost算法,AdaBoost每一轮基学习器训练过后都会更新样本权重,再训练下一个学习器,最后将所有的基学习器加权组合.AdaBoost使用的是指数损失,这个损失函数的缺点是对于异常点非常敏感,(关于各种损失函数可见之前…
本杂记摘录自文章<开发 | 为什么说集成学习模型是金融风控新的杀手锏?> 基本内容与分类见上述思维导图. . . 一.机器学习元算法 随机森林:决策树+bagging=随机森林 梯度提升树:决策树Boosting=GBDT . 1.随机森林 博客: R语言︱决策树族--随机森林算法 随机森林的原理是基于原始样本随机抽样获取子集,在此之上训练基于决策树的基学习器,然后对基学习器的结果求平均值,最终得到预测值. 随机抽样的方法常用的有放回抽样的booststrap,也有不放回的抽样.RF的基学习器…
在集成学习之Adaboost算法原理小结中,我们对Boosting家族的Adaboost算法做了总结,本文就对Boosting家族中另一个重要的算法梯度提升树(Gradient Boosting Decison Tree, 以下简称GBDT)做一个总结.GBDT有很多简称,有GBT(Gradient Boosting Tree), GTB(Gradient Tree Boosting ), GBRT(Gradient Boosting Regression Tree), MART(Multipl…
在集成学习值Adaboost算法原理和代码小结(转载)中,我们对Boosting家族的Adaboost算法做了总结,本文就对Boosting家族中另一个重要的算法梯度提升树(Gradient Boosting Decison Tree, 以下简称GBDT)做一个总结.GBDT有很多简称,有GBT(Gradient Boosting Tree), GTB(Gradient Tree Boosting ), GBRT(Gradient Boosting Regression Tree), MART(…
目录 1.基本知识点简介 2.梯度提升树GBDT算法 2.1 思路和原理 2.2 梯度代替残差建立CART回归树 1.基本知识点简介 在集成学习的Boosting提升算法中,有两大家族:第一是AdaBoost提升学习方法,另一种是GBDT梯度提升树. 传统的AdaBoost算法:利用前一轮迭代弱学习器的误差来更新训练集的权重,一轮轮迭代下去. 梯度提升树GBDT:也是通过迭代的算法,使用前向分布算法,但是其弱分类器限定了只能使用CART回归树模型. GBDT算法原理:指通过在残差减小的梯度方向建…
转自https://zhuanlan.zhihu.com/p/29802325 本文对Boosting家族中一个重要的算法梯度提升树(Gradient Boosting Decison Tree, 简称GBDT)做一个总结.GBDT有很多简称,有GBT(Gradient Boosting Tree), GTB(Gradient Tree Boosting ), GBRT(Gradient Boosting Regression Tree), MART(Multiple Additive Regr…