题意:给你A,B,让求A^B所有的因子和模上9901 思路:A可以拆成素因子的乘积: A = p1^x1 * p2^x2 *...* pn^xn 那么A^B = p1^(B*x1) * p2^(B*x2) *...* pn^(B*xn) 那么A^B所有的素因子和就是 (p1^0 + p1^1 + p1^2 + ... + p1^(B*x1) ) * (p2^0 + p2^1 + ... + p2^(B*x2) ) * ... * (pn^0 + pn^1 + ... + pn^(B*xn)) 可…
矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+Ak/2+A(k/2)*(A+A2+...+Ak/2)    k为偶数时: sum=A+A2+...+A(k-1)/2+A((k-1)/2)*(A+A2+...+A(k-1)/2)+Ak    k为奇数时. 然后递归二分求和 PS:刚开始mat定义的是__int64,于是贡献了n次TLE... #i…
筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#include<math.h>#include<iostream>#include<algorithm>#include<string.h>using namespace std;#define MOD 9901const int MAXN=10000;int p…
快速幂+等比数列求和.... Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 12599 Accepted: 3057 Description Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division…
传送门:http://poj.org/problem?id=1845 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题基础: 1) 整数的唯一分解定理: 任意正整数都有且只有一种方式写出其素因子的乘积表达式. ,其中为素数 2) 约数和公式: 对于已经分解的整数,A的所有因子之和为 3) 同余模公式: (a+b)%m=(a%m+b%m)%m (a*b)%m=(a%m*b%m)%m 1: 对A进行素因子分解 这里如果先进行筛50000内的素数会爆空间,只能用最朴素的…
当我们拆分完数据以后, A^B的所有约数之和为: sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...*[1+pn+pn^2+...+pn^(an*B)]. 当时面对等比数列的时候,想到了求和公式,因为直接算超时了,但是带膜除法不能直接除,所以又想到了乘法逆元,但是逆元的使用条件是除数和mod互质的时候,题目给我们的膜不够大,然后我就方了,不知道该怎么去处理了,后来看到网上,才学会了等比快速求和的方法. 它的思想是二分法…
任意门:http://poj.org/problem?id=1845. Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 30268 Accepted: 7447 Description Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the…
题意:求S=(A+A^2+A^3+...+A^k)%m的和 方法一:二分求解S=A+A^2+...+A^k若k为奇数:S=(A+A^2+...+A^(k/2))+A^(k/2)*(A+A^2+...+A^(k/2))+A^k若k为偶数:S=(A+A^2+...+A^(k/2))+A^(k/2)*(A+A^2+...+A^(k/2)) 也可以这么二分(其实和前面的差不多):S(2n)=A+A^2+...+A^2n=(1+A^n)*(A+A^2+...+A^n)=(1+A^n)*S(n)S(2n+1…
题意: 给你一个n*n的矩阵 让你求S: 思路: 只知道矩阵快速幂 然后nlogn递推是会TLE的. 所以呢 要把那个n换成log 那这个怎么搞呢 二分! 当k为偶数时: 当k为奇数时: 就按照这么搞就能搞出来了 (我是看的题解才A的,,, 中间乱搞的时候犯了一些脑残的错误) // by SiriusRen #include <cstdio> #include <cstring> using namespace std; int n,mod,k; struct matrix{int…
题意:求A^B的所有因子之和 很容易知道,先把分解得到,那么得到,那么 的所有因子和的表达式如下 第一种做法是分治求等比数列的和  用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n: (1)若n为奇数,一共有偶数项,则:      1 + p + p^2 + p^3 +...+ p^n = (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2) * (1+p^(n/2+1))      = (1 + p + p^2 +...+ p^(n/…