FP树(附)】的更多相关文章

Apriori算法和FPTree算法都是数据挖掘中的关联规则挖掘算法,处理的都是最简单的单层单维布尔关联规则. 转自http://blog.csdn.net/sealyao/article/details/6460578 Apriori算法 Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法.是基于这样的事实:算法使用频繁项集性质的先验知识.Apriori使用一种称作逐层搜索的迭代方法,k-项集用于探索(k+1)-项集.首先,找出频繁1-项集的集合.该集合记作L1.L1用于找频繁2…
Description You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array…
常见的挖掘频繁项集算法有两类,一类是Apriori算法,另一类是FP-growth.Apriori通过不断的构造候选集.筛选候选集挖掘出频繁项集,需要多次扫描原始数据,当原始数据较大时,磁盘I/O次数太多,效率比较低下.FPGrowth不同于Apriori的“试探”策略,算法只需扫描原始数据两遍,通过FP-tree数据结构对原始数据进行压缩,效率较高. FP代表频繁模式(Frequent Pattern) ,算法主要分为两个步骤:FP-tree构建.挖掘频繁项集. FP树表示法 FP树通过逐个读…
1 集群系统中的 FP-tree 并行算法(many for one一个任务 还是 云计算one for many多个任务?) 计算机集群系统利用网络把一组具有高性能的工作站或者 PC 机按一定的结构连接起来, 从而形成了高效的并行的计算处理系统. 各节点之间使用消息传递实现通信,集群系统通常用于改进单个计算机的计算速度与可靠性.     FP-growth 算法在挖掘每个条件模式库的过程是彼此独立进行的,相互之间没有数据和信息交换. 这一互相独立的特点可以把FP-growth 算法转换为并行算…
FP - growth是一种比Apriori更高效的发现频繁项集的方法.FP是frequent pattern的简称,即常在一块儿出现的元素项的集合的模型.通过将数据集存储在一个特定的FP树上,然后发现频繁项集或者频繁项对.通常,FP-growth算法的性能比Apriori好两个数量级以上. FP树与一般的树结构类似,但它通过链接(Link)来连接相似元素,被连起来的元素项可以看成一个链表. 上图是一棵FP树,一个元素项可以在一棵FP树种出现多次,FP树的节点会存储项集的出现频率,每个项集会以路…
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2112 The Company Dynamic Rankings has developed a new kind of computer that is no longer satisfied with the query like to simply find the k-th smallest number of the given N numbers. T…
FP树构造 FP Growth算法利用了巧妙的数据结构,大大降低了Aproir挖掘算法的代价,他不需要不断得生成候选项目队列和不断得扫描整个数据库进行比对.为了达到这样的效果,它采用了一种简洁的数据结构,叫做frequent-pattern tree(频繁模式树).下面就详细谈谈如何构造这个树,举例是最好的方法.请看下面这个例子: 这张表描述了一张商品交易清单,abcdefg代表商品,(ordered)frequent items这一列是把商品按照降序重新进行了排列,这个排序很重要,我们操作的所…
FP_growth算法是韩家炜老师在2000年提出的关联分析算法,该算法和Apriori算法最大的不同有两点: 第一,不产生候选集,第二,只需要两次遍历数据库,大大提高了效率,用31646条测试记录,最小支持度是2%, 用Apriori算法要半个小时但是用FP_growth算法只要6分钟就可以了,效率非常明显. 它的核心是FP_tree,一种树型数据结构,特点是尽量把相同元素用一个节点表示,这样就大大减少了空间,和birch算法有类似的思想.还是以如下数据为例. 每一行表示一条交易,共有9行,既…
FP树构造 FP Growth算法利用了巧妙的数据结构,大大降低了Aproir挖掘算法的代价,他不需要不断得生成候选项目队列和不断得扫描整个数据库进行比对.为了达到这样的效果,它采用了一种简洁的数据结构,叫做frequent-pattern tree(频繁模式树).下面就详细谈谈如何构造这个树,举例是最好的方法.请看下面这个例子: 这张表描述了一张商品交易清单,abcdefg代表商品,(ordered)frequent items这一列是把商品按照降序重新进行了排列,这个排序很重要,我们操作的所…
在Apriori算法原理总结中,我们对Apriori算法的原理做了总结.作为一个挖掘频繁项集的算法,Apriori算法需要多次扫描数据,I/O是很大的瓶颈.为了解决这个问题,FP Tree算法(也称FP Growth算法)采用了一些技巧,无论多少数据,只需要扫描两次数据集,因此提高了算法运行的效率.下面我们就对FP Tree算法做一个总结. 1. FP Tree数据结构 为了减少I/O次数,FP Tree算法引入了一些数据结构来临时存储数据.这个数据结构包括三部分,如下图所示: 第一部分是一个项…
FP树构造 FP Growth算法利用了巧妙的数据结构,大大降低了Aproir挖掘算法的代价,他不需要不断得生成候选项目队列和不断得扫描整个数据库进行比对.为了达 到这样的效果,它采用了一种简洁的数据结构,叫做frequent-pattern tree(频繁模式树).下面就详细谈谈如何构造这个树,举例是最好的方法.请看下面这个例子: 这 张表描述了一张商品交易清单,abcdefg代表商品,(ordered)frequent items这一列是把商品按照降序重新进行了排列,这个排序很重要,我们操作…
1.平衡二叉树 (1)由来:平衡二叉树是基于二分法的策略提高数据的查找速度的二叉树的数据结构: (2)特点: 平衡二叉树是采用二分法思维把数据按规则组装成一个树形结构的数据,用这个树形结构的数据减少无关数据的检索,大大的提升了数据检索的速度:平衡二叉树的数据结构组装过程有以下规则: 非叶子节点只能允许最多两个子节点存在,每一个非叶子节点数据分布规则为左边的子节点小当前节点的值,右边的子节点大于当前节点的值(这里值是基于自己的算法规则而定的,比如hash值): 平衡树的层级结构:因为平衡二叉树查询…
事务集过滤重排: #FP树节点结构 class treeNode: def __init__(self,nameValue,numOccur,parentNode): self.name=nameValue#节点名 self.count=numOccur#出现次数 self.nodeLink=None#链接相似的元素 self.parent=parentNode#当前节点的父节点 self.children={}#子节点集 #为count增加指定值 def inc(self,numOccur):…
Description Wind loves pretty dogs very much, and she has n pet dogs. So Jiajia has to feed the dogs every day for Wind. Jiajia loves Wind, but not the dogs, so Jiajia use a special way to feed the dogs. At lunchtime, the dogs will stand on one line,…
FP Tree算法原理总结 在Apriori算法原理总结中,我们对Apriori算法的原理做了总结.作为一个挖掘频繁项集的算法,Apriori算法需要多次扫描数据,I/O是很大的瓶颈.为了解决这个问题,FP Tree算法(也称FP Growth算法)采用了一些技巧,无论多少数据,只需要扫描两次数据集,因此提高了算法运行的效率.下面我们就对FP Tree算法做一个总结. 1. FP Tree数据结构 为了减少I/O次数,FP Tree算法引入了一些数据结构来临时存储数据.这个数据结构包括三部分,如…
Frequent Pattern 挖掘之二(FP Growth算法) FP树构造 FP Growth算法利用了巧妙的数据结构,大大降低了Aproir挖掘算法的代价,他不需要不断得生成候选项目队列和不断得扫描整个数据库进行比对.为了达到这样的效果,它采用了一种简洁的数据结构,叫做frequent-patterntree(频繁模式树).下面就详细谈谈如何构造这个树,举例是最好的方法.请看下面这个例子: 这张表描述了一张商品交易清单,abcdefg代表商品,(ordered)frequentitems…
说明:參考Mahout FP算法相关相关源代码. 算法project能够在FP关联规则计算置信度下载:(仅仅是单机版的实现,并没有MapReduce的代码) 使用FP关联规则算法计算置信度基于以下的思路: 1. 首先使用原始的FP树关联规则挖掘出全部的频繁项集及其支持度:这里须要注意,这里是输出全部的频繁项集,并没有把频繁项集合并,所以须要改动FP树的相关代码,在某些步骤把全部的频繁项集输出:(ps:參考Mahout的FP树单机版的实现,进行了改动,暂不确定是否已经输出了全部频繁项集) 为举例简…
接着是上一篇的apriori算法: FP Tree数据结构 为了减少I/O次数,FP Tree算法引入了一些数据结构来临时存储数据.这个数据结构包括三部分,如下图所示 第一部分是一个项头表.里面记录了所有的1项频繁集出现的次数,按照次数降序排列. 比如上图中B在所有10组数据中出现了8次,因此排在第一位,这部分好理解. 第二部分是FP Tree,它将我们的原始数据集映射到了内存中的一颗FP树,这个FP树比较难理解,它是怎么建立的呢? 这个我们后面再讲.第三部分是节点链表.所有项头表里的1项频繁集…
序言 FP-growth(Frequent Pattern Tree, 频繁模式树),是韩家炜老师提出的挖掘频繁项集的方法,是将数据集存储在一个特定的称作FP树的结构之后发现频繁项集或频繁项对,即常在一块出现的元素项的集合FP树. FP-growth算法比Apriori算法效率更高,在整个算法执行过程中,只需遍历数据集2次,就能够完成频繁模式发现,其发现频繁项集的基本过程如下: (1)构建FP树 (2)从FP树中挖掘频繁项集 FP-growth的一般流程如下: 1:先扫描一遍数据集,得到频繁项为…
Apriori原理:如果某个项集是频繁的,那么它的所有子集都是频繁的. Apriori算法: 1 输入支持度阈值t和数据集 2 生成含有K个元素的项集的候选集(K初始为1) 3 对候选集每个项集,判断是否为数据集中某条记录的子集 4 如果是:增加候选集的计数 5 保留频繁集(计数>t) 6 根据频繁集生成含有K+1个元素的项集候选集 7 循环2-5,直至候选集为空 Apriori算法是有缺点的 缺点是:1.需要多次扫描数据库 2.产生大量的候选频繁集 3.时间和空间复杂度高. 从算法第3步可以看…
FP-growth 算法优缺点: 优点:一般快于Apriori 缺点:实现比较困难,在某些数据上性能下降 适用数据类型:标称型数据 算法思想: FP-growth算法是用来解决频繁项集发现问题的,这个问题再前面我们可以通过Apriori算法来解决,但是虽然利用Apriori原理加快了速度,仍旧是效率比较低的.FP-growth算法则可以解决这个问题.FP-growth算法使用了频繁模式树(Frequent Pattern Tree)的数据结构.FP-tree是一种特殊的前缀树,由频繁项头表和项前…
FP树构造 FP Growth算法利用了巧妙的数据结构,大大降低了Aproir挖掘算法的代价,他不需要不断得生成候选项目队列和不断得扫描整个数据库进行比对.为了达到这样的效果,它采用了一种简洁的数据结构,叫做frequent-pattern tree(频繁模式树).下面就详细谈谈如何构造这个树,举例是最好的方法.请看下面这个例子: 这张表描述了一张商品交易清单,abcdefg代表商品,(ordered)frequent items这一列是把商品按照降序重新进行了排列,这个排序很重要,我们操作的所…
  http://product.dangdang.com/23829918.html Spark作为新兴的.应用范围最为广泛的大数据处理开源框架引起了广泛的关注,它吸引了大量程序设计和开发人员进行相关内容的学习与开发,其中 MLlib是 Spark框架使用的核心.本书是一本细致介绍 Spark MLlib程序设计的图书,入门简单,示例丰富. 本书分为 12章,从 Spark基础安装和配置开始,依次介绍 MLlib程序设计基础.MLlib的数据对象构建.MLlib中 RDD使用介绍,各种分类.聚…
前言 对于如何发现一个数据集中的频繁项集,前文讲解的经典 Apriori 算法能够做到. 然而,对于每个潜在的频繁项,它都要检索一遍数据集,这是比较低效的.在实际的大数据应用中,这么做就更不好了. 本文将介绍一种专门检索频繁项集的新算法 - FP-growth 算法. 它只会扫描数据集两次,能循序挖掘出频繁项集.因此这种算法在网页信息处理中占据着非常重要的地位. FP-growth 算法基本原理 将数据存储到一种成为 FP 树的数据结构中,这样的一棵树包含了数据集中满足最小支持度阈值的所有节点信…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第12章 - 使用FP-growth算法来高效发现频繁项集. 基本概念 FP-growth算法 FP-growth算法的性能很好,只需要扫描两次数据集,就能生成频繁项集.但不能用于发现关联规则. 我想应该可以使用Apriori算法发现关联规则. FP代表频繁模式(Frequent Pattern). 条件模式基(conditional pattern base). 条件模式基是以所查找元素项为结…
系列文章:<机器学习实战>学习笔记 最近看了<机器学习实战>中的第11章(使用Apriori算法进行关联分析)和第12章(使用FP-growth算法来高效发现频繁项集).正如章节标题所示,这两章讲了无监督机器学习方法中的关联分析问题.关联分析可以用于回答"哪些商品经常被同时购买?"之类的问题.书中举了一些关联分析的例子: 通过查看哪些商品经常在一起购买,可以帮助商店了解用户的购买行为.这种从数据海洋中抽取的知识可以用于商品定价.市场促销.存活管理等环节. 在美国…
在关联规则挖掘领域最经典的算法法是Apriori,其致命的缺点是需要多次扫描事务数据库.于是人们提出了各种裁剪(prune)数据集的方法以减少I/O开支,韩嘉炜老师的FP-Tree算法就是其中非常高效的一种. 支持度和置信度 严格地说Apriori和FP-Tree都是寻找频繁项集的算法,频繁项集就是所谓的“支持度”比较高的项集,下面解释一下支持度和置信度的概念. 设事务数据库为: A E F G A F G A B E F G E F G 则{A,F,G}的支持度数为3,支持度为3/4. {F,…
所 谓挖掘频繁模式,关联和相关,即指在出现的数据集中找到一个经常出现的序列模式或者是一个经常出现的数据结构.就像搞CPU设计的人知道,Cache的预 取机制有流预取和指针预取,前者就是发现流模式,即发现在地址上顺序出现的序列模式,后者即发现指针链接模式,即链式数据结构. 比 如一个人逛超市,她的购物篮里可能装有各种商品的组合.我们设想所有的商品构成全集,每种商品用0-1表示是否出现,那么每个购物篮就可以用一个布尔向量 表示,如(0,1,...,1,0)可能表示:(没有买酸奶,买了冰激凌...买了…
基于FP-Tree的关联规则FP-Growth推荐算法Java实现 package edu.test.ch8; import java.util.ArrayList; import java.util.List; public class Item implements Comparable { private String value; private Item preItem; // 前继节点Item private List<Item> nextItem = new ArrayList&…
最近上数据挖掘的课程,其中学习到了频繁模式挖掘这一章,这章介绍了三种算法,Apriori.FP-Growth和Eclat算法:由于对于不同的数据来说,这三种算法的表现不同,所以我们本次就对这三种算法在不同情况下的效率进行对比.从而得出适合相应算法的情况. (一)算法原理 其中相应的算法原理在之前的博客中都有非常详细的介绍,这里就不再赘述,这里给出三种算法大概的介绍 但是这里给出每个算法的关键点: 1.1 Apriori算法: 限制候选产生发现频繁项集 重要性质:频繁项集所有非空子集也一定是频繁的…