NOIP2002 均分纸牌】的更多相关文章

题一 均分纸牌 (存盘名: NOIPG1) [问题描述] 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上:在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上:其他堆上取的纸牌,可以移到相邻左边或右边的堆上. 现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多. 例如 N=4,4 堆纸牌数分别为: ① 9 ② 8 ③ 17 ④…
1320:[例6.2]均分纸牌(Noip2002) 时间限制: 1000 ms         内存限制: 65536 KB提交数: 3537     通过数: 1839 [题目描述] 有n堆纸牌,编号分别为 1,2,…, n.每堆上有若干张,但纸牌总数必为n的倍数.可以在任一堆上取若干张纸牌,然后移动. 移牌规则为:在编号为1的堆上取的纸牌,只能移到编号为 2 的堆上:在编号为 n 的堆上取的纸牌,只能移到编号为n-1的堆上:其他堆上取的纸牌,可以移到相邻左边或右边的堆上. 现在要求找出一种移…
1098 均分纸牌 2002年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解   题目描述 Description 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上:在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上:其他堆上取的纸牌,可以移到相邻左边或右边的堆上. 现在…
                                                              均分纸牌 描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上:在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上:其他堆上取的纸牌,可以移到相邻左边或右边的堆上. 现在要求找出一种移动方法,用最少的移动次数使每堆上…
题目描述 Description 有 N 堆纸牌,编号分别为 1,2,-, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上:在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上:其他堆上取的纸牌,可以移到相邻左边或右边的堆上. 现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多. 例如 N=4,4 堆纸牌数分别为: ① 9 ② 8 ③ 17 ④ 6 移动3次可达到目的…
[博客园的第一条随笔,值得纪念一下] 均分纸牌[传送门] 洛谷上的算法标签是 这道题是一道贪心题,过了四遍才过(蒟蒻有点废) 第一遍的时候考虑的非常少,只想到了求出平均数→求差值→从左往右加差值: 这样出来的结果永远是n-1,只过了一个点. 附上错误想法(不要被误导): #include<iostream> #include<cstdio> using namespace std; ],sum=,c[],b,ans=; int t(); int main() { cin>&g…
P1368 均分纸牌(加强版) 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,纸牌总数必为 N 的倍数.可以在任一堆上取1张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,能移到编号为 2和N 的堆上:在编号为 N 的堆上取的纸牌,能移到编号为 N-1和1 的堆上:其他堆上取的纸牌,可以移到相邻左边或右边的堆上. 现在要求找出一种移动方法,使每堆上纸牌数都一样多且牌的移动次数尽量少. 输入输出格式 输入格式: 第一行一个整数n 第二行为n个空格分开的正整数,为…
P1031 均分纸牌 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若干张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上:在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上:其他堆上取的纸牌,可以移到相邻左边或右边的堆上. 现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多. 例如 N=4,4 堆纸牌数分别为: ①9②8③17④6 移动3次可达到目的: 从 ③ 取…
P1031 均分纸牌 这道题告诉我们,对于实在想不出算法的题,可以大胆按照直觉用贪心,而且在考试中永远不要试着去证明贪心算法,因为非常难证,会浪费大量时间. (这就是你们都不去证的理由??) 这道题贪心算法就是,计算牌的平均数,然后除了最后一堆以外,每堆都通过把多余牌移到下一堆或从下一堆取牌来使其达到平均值,并且假设牌堆内牌数量可以为负. var a:array[1..110] of integer; i,x,n,ans:longint; begin readln(n); for i:=1 to…
均分纸牌 题目描述: 有\(N\)堆纸牌,编号分别为\(1,2,-,N\).每堆上有若干张,但纸牌总数必为\(N\)的倍数.可以在任一堆上取若干张纸牌,然后移动. 移牌规则为:在编号为\(1\)堆上取的纸牌,只能移到编号为\(2\)的堆上:在编号为\(N\)的堆上取的纸牌,只能移到编号为\(N-1\)的堆上:其他堆上取的纸牌,可以移到相邻左边或右边的堆上. 现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多. 分析: 所有堆均达到相等时的最少移动次数. 一看到最少这个字眼,就应该想…