Spark算子总结及案例】的更多相关文章

spark算子大致上可分三大类算子: 1.Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Value型的数据. 2.Key-Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Key-Value型的数据. 3.Action算子,这类算子会触发SparkContext提交作业. 一.Value型Transformation算子 1)map val a = sc.parallelize(List() val…
Spark算子总结(带案例) spark算子大致上可分三大类算子: 1.Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Value型的数据. 2.Key-Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Key-Value型的数据. 3.Action算子,这类算子会触发SparkContext提交作业. 一.Value型Transformation算子 1)map val a = sc.parallel…
Spark Streaming 进阶与案例实战 1.带状态的算子: UpdateStateByKey 2.实战:计算到目前位置累积出现的单词个数写入到MySql中 1.create table CREATE TABLE `wordcount` ( `word` VARCHAR(50) NOT NULL, `count` INT(11) NOT NULL, PRIMARY KEY (`word`) ) COMMENT='单词统计表' COLLATE='utf8mb4_german2_ci' ENG…
http://lxw1234.com/archives/2015/07/363.htm Spark算子:RDD基本转换操作(1)–map.flagMap.distinct Spark算子:RDD创建操作 Spark算子:RDD基本转换操作(2)–coalesce.repartition Spark算子:RDD基本转换操作(3)–randomSplit.glom Spark算子:RDD基本转换操作(4)–union.intersection.subtract Spark算子:RDD基本转换操作(5…
1,看您有维护博客,还利用业余时间著书,在技术输出.自我提升以及本职工作的时间利用上您有没有什么心得和大家分享?(也可以包含一些您写书的小故事.)回答:在工作之余能够写博客.著书主要对技术的坚持和热爱.自己平时除了工作时间回到家还得陪家人,用于自己学习的时间并不算多,自己每天在上下班的班车会看自己感兴趣的书或者视频,一天下来大概有一个多小时,在下班后会抽出两个多小时动手做实验或者写博客,当然节假日会有更多的时间用于学习和写东西.回顾自己写博客和写书的过程,开始的时候和大家一样都是很痛苦,有时候很…
  UserView--第二种方式(避免第一种方式Set饱和),基于Spark算子的java代码实现   测试数据 java代码 package com.hzf.spark.study; import java.util.Map; import java.util.Set; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.jav…
UserView--第一种方式set去重,基于Spark算子的java代码实现 测试数据 java代码 package com.hzf.spark.study; import java.util.HashSet; import java.util.Iterator; import java.util.Set; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.ap…
 [原创 Hadoop&Spark 动手实践 6]Spark 编程实例与案例演示 Spark 编程实例和简易电影分析系统的编写 目标: 1. 掌握理论:了解Spark编程的理论基础 2. 搭建开发环境:自己可以搭建Spark程序开发的环境 3. 动手实践简单的示例:完成一些简单的动手实验,可以帮助Spark的深入理解 4. 完成一个完整的小项目:完成简易电影分析系统的编写 1. 掌握理论:了解Spark编程的理论基础…
Scala进阶之路-Spark底层通信小案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Spark Master和worker通信过程简介 1>.Worker会向master注册自己: 2>.Master收到worker的注册信息之后,会告诉你已经注册成功,并给worker发送启动执行器的消息: 3>.Worker收到master的注册消息之后,会定期向master汇报自己的状态: 4>.master收到worker的心跳信息后,定期的更新worker的…
前言 传统的RDD相对于mapreduce和storm提供了丰富强大的算子.在spark慢慢步入DataFrame到DataSet的今天,在算子的类型基本不变的情况下,这两个数据集提供了更为强大的的功能.但也有些功能暂时无法使用.比如reduceByKey,在DataFrame和DataSet里是没有的.所以觉得有必要做一些梳理. 准备工作 测试数据,json格式: { "DEVICENAME": "test1", "LID": 17050131…