第七部分 让 学习率 和 学习潜能 随时间的变化 光训练就花了一个小时的时间.等结果并非一个令人心情愉快的事情.这一部分.我们将讨论将两个技巧结合让网络训练的更快! 直觉上的解决的方法是,開始训练时取一个较高的学习率,随着迭代次数的增多不停的减小这个值.这是有道理的,由于開始的时候我们距离全局最长处很远.我们想要朝着最长处的方向大步前进:然而里最长处越近,我们就前进的越慎重,以免一步跨过去.举个样例说就是你乘火车回家,但你进家门的时候肯定是走进去.不能让火车开进去. 从讨论深度学习中初始化和学习…
Using convolutional neural nets to detect facial keypoints tutorial   this blog from: http://danielnouri.org/notes/2014/12/17/using-convolutional-neural-nets-to-detect-facial-keypoints-tutorial/   December 17, 2014 | categories: Python, Deep Learning…
CNN(Convolutional Neural Network) 卷积神经网络(简称CNN)最早可以追溯到20世纪60年代,Hubel等人通过对猫视觉皮层细胞的研究表明,大脑对外界获取的信息由多层的感受野(Receptive Field)激发完成的.在感受野的基础上,1980年Fukushima提出了一个理论模型Neocognitron是感受野在人工神经网络领域的首次应用.1998年,Lecun等人提出的LeNet-5模型在手写字符识别上取得了成功,引起了学术界对卷积神经网络的关注.2012年…
零.说明: 本文的所有代码均可在 DML 找到,欢迎点星星. 注.CNN的这份代码非常慢,基本上没有实际使用的可能,所以我只是发出来,代表我还是实践过而已 一.引入: CNN这个模型实在是有些年份了,最近随着深度学习的兴起又开始焕发青春了,把imagenet测试的准确度提高了非常多,一个是Alex的工作,然后最近好像Zeiler又有突破性的成果,可惜这些我都没看过,主要是imagenet的数据太大了,我根本没有可能跑得动,所以学习的积极性有些打折扣.不说那么多,还是先实现一个最基础的CNN再说吧…
不是目标检测也不是语义分割,两步CNN指的是,采集的数据是一堆点,以点为中心的65*65和17*17图像范围大小来判断这个点是否是油棕树.第一步就是判断65*65的范围是否为(油棕树植被群,其他植被/空地,不透水面/云),第二步判断17*17的范围是否为(油棕树,背景,其他植被/空地,不透水面/云).两步结果都是油棕树的话就认为这个点是油棕树. 预测时对整幅影像滑动窗口,有重叠,再对最后的点结果最小距离分析,融合对同一棵树的多个预测点. 训练数据17000个点,验证数据3000个点. 最后比较了…
An Intuitive Explanation of Convolutional Neural Networks 原文地址:https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/comment-page-4/?unapproved=31867&moderation-hash=1ac28e426bc9919dc1a295563f9c60ae#comment-31867 一.什么是卷积神经网络.为什么卷积神经网络很重要? 卷…
An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ Posted on August 11, 2016 by ujjwalkarn What are Convolutional Neural Networks and why are they important? Convolutional Neural…
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ An Intuitive Explanation of Convolutional Neural Networks Posted on August 11, 2016 by ujjwalkarn What are Convolutional Neural Networks and why are they important? Convolutional Neural…
CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻译 综述深度卷积神经网络架构:从基本组件到结构创新 目录 摘要    1.引言    2.CNN基本组件        2.1 卷积层        2.2 池化层        2.3 激活函数        2.4 批次归一化        2.5 Dropout        2.6 全连接层…
目录 1 神经网络 2 卷积神经网络 2.1 局部感知 2.2 参数共享 2.3 多卷积核 2.4 Down-pooling 2.5 多层卷积 3 ImageNet-2010网络结构 4 DeepID网络结构 5 参考资源 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet.cuda-convnet2.为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益.正文之前,先…