乘法逆元...Orz】的更多相关文章

最近打的几场比赛,都出现了有关逆元的题目,今天就整理了一下... 求乘法逆元的几种方法:http://www.cnblogs.com/james47/p/3871782.html 博文转载链接:http://blog.csdn.net/acdreamers/article/details/8220787 今天我们来探讨逆元在ACM-ICPC竞赛中的应用,逆元是一个很重要的概念,必须学会使用它. 对于正整数和,如果有,那么把这个同余方程中的最小正整数解叫做模的逆元. 逆元一般用扩展欧几里得算法来求…
最近想学数论 刚好今天(初赛上午)智推了一个数论题 我屁颠屁颠地去学了乘法逆元 然后水掉了P3811 和 P2613 (zcy吊打集训队!)(逃 然后才开始做这题. 乘法逆元 乘法逆元的思路大致就是a*x恒等于1(mod b)满足a,b互质,则x为a的逆元 这里给一个P2613的函数 void exgcd(int a, int b, int &d, int &x,int &y) { ) { d = a; x = ; y = ; return; } exgcd(b, a%b, d,…
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p2^{a2}p3^{a3}...pn^{an},b=p1^{b1}p2^{b2}p3^{b3}...pn^{bn}\),那么\(gcd(a,b)=\prod_{i=1}^{n}pi^{min(ai,bi)},lcm(a,b)=\prod_{i=1}^{n}pi^{max(ai,bi)}\)(0和任何…
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的莫比乌斯反演式子并没有除法- 本脑子有坑选手的做法:20101009是一个质数,而且n和m的范围小于20101009,这一定有其原因.经过仔细思考,我们发现这保证了每个1~n的数都有mod20101009意义下的乘法逆元.用inv[x]表示x的逆元,我们发现原先的式子等于sigma{inv[gcd(i,j)]…
题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1256 题意:中文题诶~ 思路: M, N 互质, 求满足 K * M % N = 1 的最小k, 由这个式子我们可以得到y*N+1=k*M, 我们将这个式子变化一下, k*M+y'*N=1, 求最小的k, 就是求最小乘法逆元啦~ 解这个式子我们直接用exgcd()就好啦~ 代码: #include <bits/stdc++.h> using namespa…
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(ll l,ll r,ll &x,ll &y) { if(r==0){x=1;y=0;return l;} else { ll d=exgcd(r,l%r,y,x); y-=l/r*x; return d; } } 3.求a关于m的乘法逆元 ll mod_inverse(ll a,ll m){ l…
原题: http://acm.hdu.edu.cn/showproblem.php?pid=5651 很容易看出来的是,如果一个字符串中,多于一个字母出现奇数次,则该字符串无法形成回文串,因为不能删减字母. 当能构成回文串时,我们只需考虑这个回文串左半部分的情况,所以这个问题也就变成了求一半字符串的有重复的全排列. 因为应用全排列公式中,会用大数除以大数再取余,除法不能简单的分子.分母取余再做除法,这时就要用到乘法逆元,同时用费马小定理求乘法逆元 相关公式:http://www.cnblogs.…
题目大概说给一棵树,树的边一开始都是损坏的,要修复一些边,修复完后要满足各个点到根的路径上最多只有一条坏的边,现在以各个点为根分别求出修复边的方案数,其结果模1000000007. 不难联想到这题和HDU2196是一种类型的树形DP,因为它们都要分别求各个点的答案.然后解法也不难想: dp0[u]表示只考虑以u结点为根的子树的方案数 dp1[u]表示u结点往上走,倒过来,以它父亲为根那部分的方案数 有了这两部分的结果,对于各个点u的答案就是dp0[u]*(dp1[u]+1).这两部分求法如下,画…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1452 题目大意:求2004^X所有约数和,结果mod 29. 解题思路: ①整数唯一分解定理: 一个整数A一定能被分成:A=(P1^K1)*(P2^K2)*(P3^K3).....*(Pn^Kn)的形式.其中Pn为素数. 如2004=(22)*3*167. 那么2004x=(22x)*(3x)*(167x). ②约数和公式 对于一个已经被分解的整数A=(P1^K1)*(P2^K2)*(P3^K3)…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1576 题目大意:求(A/B)mod 9973.但是给出的A是mod形式n,n=A%9973. 解题思路: 两种思路,一种从乘法逆元角度,另一种从扩展GCD推公式角度. ①乘法逆元: 先来看下逆元和乘法逆元的关系,对于A*X=B,有X=A-1*B,A-1就是普通的逆元了,在这里就是倒数. 如果A*X=B mod n,变成同余式了,那么A-1依然是存在的,只不过不是倒数了,一般把同余之后的逆元称为乘法…