参考与前言 英文原版 Original English Version:https://fabiandablander.com/r/Curve-Fitting-Gaussian.html 如何通俗易懂地介绍 Gaussian Process?: https://www.zhihu.com/question/46631426/answer/1735470753 如何通俗易懂地介绍 Gaussian Process? - 蒟蒻王的回答 - 知乎 A Visual Exploration of Gau…
http://blog.csdn.net/pipisorry/article/details/49804441 常见的曲线拟合方法 1.使偏差绝对值之和最小 2.使偏差绝对值最大的最小       3.使偏差平方和最小 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法. 皮皮blog 多项式拟合 多项式拟合公式 多项式阶数对数据拟合的影响 数据量较少,阶数过高,可能过拟合. 多项式拟合问题描述 假定给定一个训练数据集: 其中,是输入的观测值,是相应的输出y的…
一起啃PRML - 1.1 Example: Polynomial Curve Fitting @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 前言:真是太糟糕了,本地的公式和图片粘上来全都喂汪了... We begin by introducing a simple regression problem, 用一个例子穿起这些零碎的知识点. 回顾最前面的Mathematical Notation: A superscript T denotes…
——转载网络 我的matlab版本是 2016a 首先,工具箱如何打开呢? 在 apps 这个菜单项中,可以找到很多很多的应用,点击就可以打开具体的工具窗口 本文介绍的工具有以下这些: curve Fitting curve Fitting 一开始的界面是这样子的 其中下面这个部分是用来添加数据的,提供的选项是workspace中已经存在的变量 这里我提供一组数据,用来演示 x=[8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0,…
一起啃PRML - 1.2.4 The Gaussian distribution 高斯分布 正态分布 @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 我们将用整个第二章来研究各种各样的概率分布以及它们的性质.然而,在这里介绍连续变量一种最重要的概率分布是很方便的.这种分布就是正态分布(normal distribution)或者高斯分布(Gaussian distribution).在其余章节中(事实上在整本书中),我们将会经常用到这种分布.…
正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学.物理及project等领域都很重要的概率分布,在统计学的很多方面有着重大的影响力. 若随机变量X服从一个数学期望为μ.标准方差为σ2的高斯分布,记为: X∼N(μ,σ2), 则其概率密度函数为 正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度.因其曲线呈钟形,因此人们又常常称之为钟形曲线.我们通常所说的标准正态分布是μ = 0,σ = 1的正态分布(见右图中绿色曲…
高斯分布(Gaussian Distribution)的概率密度函数(probability density function) 对应于numpy中: numpy.random.normal(loc=0.0, scale=1.0, size=None) 参数的意义为: loc:float 此概率分布的均值(对应着整个分布的中心centre) scale:float 此概率分布的标准差(对应于分布的宽度,scale越大越矮胖,scale越小,越瘦高) size:int or tuple of in…
书中给出了一个典型的曲线拟合的例子,给定一定量的x以及对应的t值,要你判断新的x对应的t值多少. 任务就是要我们去发现潜在的曲线方程:sin(2πx) 这时就需要概率论的帮忙,对于这种不确定给t赋何值的情况,它可以通过一种精确和量化的方式来提供一种框架, 而对于决策理论,为了根据适当的度量方式来获取最优的预测,它允许我们挖掘一种概率模型. 下面对于上面的例子展开讨论: 假设曲线的多项式方程为: 系数怎么求? 通过把多项式去拟合训练数据,我们需要设定一个error function,通过最小化这个…
>> x=-3:0.2:5;y=x.^2-1;xn=-2:0.1:7; >>     >> %多元函数(z=sin(x2+y2)/(x2+y2))拟合 >> [X,Y]=meshgrid(-2:0.2:2);Z=sin(X.^2+Y.^2)./(X.^2+Y.^2+eps); >> SX=[X(:),Y(:)];SZ=Z(:); [nX,nY]=meshgrid(-3:0.1:3);NX=[nX(:),nY(:)]; >> >&…
啊啊啊,竟然不支持latex,竟然HTML代码不能包含javascript,代码编辑器也不支持Matlab!!!我要吐槽博客的编辑器...T_T只能贴图凑合看了,代码不是图,但这次为了省脑细胞,写的不简洁,凑合看吧... numPoints = ; lnlambda = [-Inf - ]; M = ; % [, , , ]; x = linspace(,); % gt data for plotting t = sin(*pi*x); ttest = t + normrnd(,0.2, siz…