一.threadpool   基本用法 pip install threadpool pool = ThreadPool(poolsize) requests = makeRequests(some_callable, list_of_args, callback) [pool.putRequest(req) for req in requests] pool.wait() 第一行定义了一个线程池,表示最多可以创建poolsize这么多线程: 第二行是调用makeRequests创建了要开启多线…
一.安装 pip install threadpool 二.使用介绍 (1)引入threadpool模块 (2)定义线程函数 (3)创建线程 池threadpool.ThreadPool() (4)创建需要线程池处理的任务即threadpool.makeRequests() (5)将创建的多个任务put到线程池中,threadpool.putRequest (6)等到所有任务处理完毕theadpool.pool() import threadpool def ThreadFun(arg1,arg…
一.安装与简介 pip install threadpool pool = ThreadPool(poolsize) requests = makeRequests(some_callable, list_of_args, callback) [pool.putRequest(req) for req in requests] pool.wait() 第一行定义了一个线程池,表示最多可以创建poolsize这么多线程: 第二行是调用makeRequests创建了要开启多线程的函数,以及函数相关参…
一.安装与简介 pip install threadpool pool = ThreadPool(poolsize) requests = makeRequests(some_callable, list_of_args, callback) [pool.putRequest(req) for req in requests] pool.wait() 第一行定义了一个线程池,表示最多可以创建poolsize这么多线程: 第二行是调用makeRequests创建了要开启多线程的函数,以及函数相关参…
Python 线程池(小节) from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor import os,time,random def task(n): print('%s is runing' %os.getpid()) time.sleep(random.randint(1,3)) return n**2 if __name__ == '__main__': executor=ProcessPoolExec…
一.线程池 很久(python2.6)之前python没有官方的线程池模块,只有第三方的threadpool模块, 之后再python2.6加入了multiprocessing.dummy 作为可以使用线程池的方式, 在python3.2(2012年)之后加入了concurrent.futures模块(python3.1.5也有,但是python3.1.5发布时间晚于python3.2一年多),这个模块是python3中自带的模块,但是python2.7以上版本也可以安装使用. 下面分别介绍下各…
多种方法实现 python 线程池 一. 既然多线程可以缩短程序运行时间,那么,是不是线程数量越多越好呢? 显然,并不是,每一个线程的从生成到消亡也是需要时间和资源的,太多的线程会占用过多的系统资源(内存开销,cpu开销),而且生成太多的线程时间也是可观的,很可能会得不偿失,这里给出一个最佳线程数量的计算方式: 最佳线程数的获取: 1.通过用户慢慢递增来进行性能压测,观察QPS(即每秒的响应请求数,也即是最大吞吐能力.),响应时间 2.根据公式计算:服务器端最佳线程数量=((线程等待时间+线程c…
Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码,但是当项目达到一定的规模,频繁创建/销毁进程或者线程是非常消耗资源的,这个时候我们就要编写自己的线程池/进程池,以空间换时间.但从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,实现了对threading和multiprocessing的进一步抽象,对编写线…
Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,实现了对threading和multiprocessing的进一步抽象,对编写线程池/进程池提供了直接的支持,他属于上层的封装,对于用户来说,不用在考虑那么多东西了. 官方参考资料:https://pythonhosted.org/futures/ 1.Executor Exectuor是基础模块,这是一个抽象类,其子类分…
需要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不能一直去自己加锁吧那么我们就用QUEUE,这样还解决了自动加锁的问题由Queue延伸出的一个点也非常重要的概念.以后写程序也会用到这个思想.就是生产者与消费者问题 一.Python标准模块--concurrent.futures(并发未来) concurent.future模块需要了解的1.concurent.f…