Lesson 2 Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization 这篇文章其实是 Coursera 上吴恩达老师的深度学习专业课程的第二门课程的课程笔记. 参考了其他人的笔记继续归纳的. 训练,验证,测试集 (Train / Dev / Test sets) 在机器学习发展的小数据量时代,常见做法是将所有数据三七分,就是人们常说的 70% 训练集,30% 测试集.如果明确设…
About this Course This course will teach you the "magic" of getting deep learning to work well. Rather than the deep learning process being a black box, you will understand what drives performance, and be able to more systematically get good res…
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Initialization Welcome to the first assignment of "Improving Deep Neural Networks". Training your neural network requires specifying an initial value of the weights. A well chosen initialization method will help…
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Gradient Checking Welcome to the final assignment for this week! In this assignment you will learn to implement and use gradient checking. You are part of a team working to make mobile payments available globally, and…
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep Learning models have so much flexibility and capacity that overfitting can be a serious problem, if the training dataset is not big enough. Sure it do…
声明:所有内容来自coursera,作为个人学习笔记记录在这里. 请不要ctrl+c/ctrl+v作业. Optimization Methods Until now, you've always used Gradient Descent to update the parameters and minimize the cost. In this notebook, you will learn more advanced optimization methods that can spee…
Gradient Checking Welcome to this week's third programming assignment! You will be implementing gradient checking to make sure that your backpropagation implementation is correct. By completing this assignment you will: - Implement gradient checking…
Week 1 Quiz - Practical aspects of deep learning(第一周测验 - 深度学习的实践) \1. If you have 10,000,000 examples, how would you split the train/dev/test set? (如果你有 10,000,000 个样本,你会如何划分训练/开发/测试集?) [ ]98% train . 1% dev . 1% test(训练集占 98% , 开发集占 1% , 测试集占 1%) 答案…
第一周:深度学习的实践层面 (Practical aspects of Deep Learning) 1.1 训练,验证,测试集(Train / Dev / Test sets) 创建新应用的过程中,不可能从一开始就准确预测出一些信息和其他超级参数,例如:神经网络分多少层:每层含有多少个隐藏单元:学习速率是多少:各层采用哪些激活函数.应用型机器学习是一个高度迭代的过程. 从一个领域或者应用领域得来的直觉经验,通常无法转移到其他应用领域,最佳决策取决于 所拥有的数据量,计算机配置中输入特征的数量,…
Tensorflow Welcome to the Tensorflow Tutorial! In this notebook you will learn all the basics of Tensorflow. You will implement useful functions and draw the parallel with what you did using Numpy. You will understand what Tensors and operations are,…