一.<莫烦Python>学习笔记: TensorFlow从入门到理解(一):搭建开发环境[基于Ubuntu18.04] TensorFlow从入门到理解(二):你的第一个神经网络 TensorFlow从入门到理解(三):你的第一个卷积神经网络(CNN) TensorFlow从入门到理解(四):你的第一个循环神经网络RNN(分类例子) TensorFlow从入门到理解(五):你的第一个循环神经网络RNN(回归例子) TensorFlow从入门到理解(六):可视化梯度下降…
运行代码: from __future__ import print_function import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # 神经层函数 def add_layer(inputs, in_size, out_size, activation_function=None): Weights = tf.Variable(tf.random_normal([in_size, out_si…
*注:教程及本文章皆使用Python3+语言,执行.py文件都是用终端(如果使用Python2+和IDE都会和本文描述有点不符) 一.安装,测试,卸载 TensorFlow官网介绍得很全面,很完美了,各种系统.方式.类别都一一组合介绍了,大家直接点击去官网安装TensorFlow,这里需要注意的是TensorFlow有CPU和GPU版本之分.当然用TensorFlow前得先装好Python的开发环境. *测试安装是否成功的代码时,如果使用的是CPU版本,如果出现错误: sess = tf.Ses…
运行代码: import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D LR = 0.1 REAL_PARAMS = [1.2, 2.5] INIT_PARAMS = [[5, 4], [5, 1], [2, 4.5]][2] x = np.linspace(-1, 1, 200, dtype=np.float32) # x d…
运行代码: import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEPS = 20 BATCH_SIZE = 50 INPUT_SIZE = 1 OUTPUT_SIZE = 1 CELL_SIZE = 10 LR = 0.006 def get_batch(): global BATCH_START, TIME_STEPS # xs shape (50ba…
运行代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # set random seed for comparing the two result calculations tf.set_random_seed(1) # this is data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) #…
运行代码: from __future__ import print_function import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # number 1 to 10 data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) def compute_accuracy(v_xs, v_ys): globa…
上一节中,我们介绍了Pytorch的基本知识,如数据格式,梯度,损失等内容. 在本节中,我们将介绍如何使用Pytorch来搭建一个经典的分类神经网络. 搭建一个神经网络并训练,大致有这么四个部分: 1.准备数据: 2.搭建模型: 3.评估函数: 4.优化网络权重. 先上一张模型结构图,基本包含了一个网络模型所包含的内容了. 接下来依次介绍. 一.数据准备 这一部分内容在上一篇中已详细讲过,这里就不多赘述了. 二.搭建模型 1.层的概念(神经网络的基本组建单元) 针对y=wx+b,搭建了一个简易的…
构造你自己的第一个神经网络 通过手势的图片识别图片比划的数字:1) 现在用1080张64*64的图片作为训练集2) 用120张图片作为测试集  定义初始化值 def load_dataset(): train_dataset = h5py.File('datasets/train_signs.h5', "r") train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set…
本文主要通过一个简单的 Demo 介绍 TensorFlow 初级 API 的使用方法,因为自己也是初学者,因此本文的目的主要是引导刚接触 TensorFlow 或者 机器学习的同学,能够从第一步开始学习 TensorFlow.阅读本文先确认具备以下基础技能: 会使用 Python 编程(初级就OK,其实 TensorFlow 也支持 Java.C++.Go) 一些数组相关的知识(线性代数没忘干净就行) 最好再懂点机器学习相关的知识(临时百度.Google也来得及) 基础知识 张量(Tensor…