Dijkstra——单源最短路径】的更多相关文章

Dijkstra 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法,由计算机科学家 Edsger Dijkstra 于 1956 年构思并于 1959 年发表.其解决的问题是:给定图 G 和源顶点 v,找到从 v 至图中所有顶点的最短路径. Dijkstra 算法采用贪心算法(Greedy Algorithm)范式进行设计.在最短路径问题中,对于带权有向图 G = (V, E),Dijkstra 算法的初始实现版本未使用最小优先…
算法思想 ①从一个源点开始,找距离它最近的点顶点v ②然后以顶点v为起点,去找v能到达的顶点w,即v的邻居 比较源点直接到 v的距离和(源点到v的距离+v到w的距离) 若大于后者则更新源点的到w的开销 ③然后去掉这个顶点v,去寻找下一个到距离源点最近的顶点重复② 最后更新完所有顶点 算法思路 1.用邻接表或者一个二维数组(邻接矩阵)来存储图 2.设置dist存储到源点的最短距离 known标记顶点是被处理 path记录路径(到达该顶点的上一个顶点) 3.这步的实现和算法思想中描述的一样 4.递归…
题目链接:http://poj.org/problem?id=2387 Dijkstra算法: //求某一点(源点)到另一点的最短路,算法其实也和源点到所有点的时间复杂度一样,O(n^2); 图G(V,E),设置一个顶点集合S,不断贪心选择,指导S扩充为V,计算结束. 贪心选择的方法:节点个数n,源节点v,先在S中加入源节点v,初始化源节点,开始扩充S,找到一个点,他离S集合最近,加入到S集合中去,再利用这个点更新S本身中的最短路径. 题目大意:很裸的Dijkstra,但是这里有两点 1.图是双…
话不多说上代码 链式前向星233 #include<bits/stdc++.h> using namespace std; ,_max=0x3fffffff; //链式前向星 struct bian{ int from,to,dist; bian(int u,int v,int d) : from(u),to(v),dist(d){} };//定义一个 边 类型 struct heapn{ int u,d; heapn(int u,int d): u(u),d(d) {} bool opera…
Bellman-Ford 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法.该算法由 Richard Bellman 和 Lester Ford 分别发表于 1958 年和 1956 年,而实际上 Edward F. Moore 也在 1957 年发布了相同的算法,因此,此算法也常被称为 Bellman-Ford-Moore 算法. Bellman-Ford 算法和 Dijkstra 算法同为解决单源最短路径的算法.对于带权有向…
Dijkstra算法树解决有向图G=(V,E)上带权的单源最短路径问题,但是要求所有边的权值非负. 解题思路: V表示有向图的所有顶点集合,S表示那么一些顶点结合,从源点s到该集合中的顶点的最终最短路径的权值(程序中用dist[i]表示)已经确定.算法反复选择具有最短路径估计的顶点u 属于 V-S(即未确定最短路径的点,程序中finish[i]=false的点),并将u加入到S中(用finish[i]=true表示),最后对u的所有输出边进行松弛. 程序实现:      输入数据: 5 7 0…
Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 32824   Accepted: 11098 Description Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessi…
dijkstra算法与prim算法的区别   1.先说说prim算法的思想: 众所周知,prim算法是一个最小生成树算法,它运用的是贪心原理(在这里不再证明),设置两个点集合,一个集合为要求的生成树的点集合A,另一个集合为未加入生成树的点B,它的具体实现过程是: 第1步:所有的点都在集合B中,A集合为空. 第2步:任意以一个点为开始,把这个初始点加入集合A中,从集合B中减去这个点(代码实现很简单,也就是设置一个标示数组,为false表示这个点在B中,为true表示这个点在A中),寻找与它相邻的点…
原文:http://www.cnblogs.com/dolphin0520/archive/2011/08/26/2155202.html 单源最短路径问题,即在图中求出给定顶点到其它任一顶点的最短路径.在弄清楚如何求算单源最短路径问题之前,必须弄清楚最短路径的最优子结构性质. 一.最短路径的最优子结构性质 该性质描述为:如果P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必定是从k到s的最短路径.下面证明该性质的正…
Dijkstra算法解决了有向图G=(V,E)上带权的单源最短路径问题,但要求所有边的权值非负. Dijkstra算法是贪婪算法的一个很好的例子.设置一顶点集合S,从源点s到集合中的顶点的最终最短路径的权值均已确定.算法反复选择具有最短路径估计的顶点u,并将u加入到S中,对u 的所有出边进行松弛.如果可以经过u来改进到顶点v的最短路径的话,就对顶点v的估计值进行更新. 如上图,u为源点,顶点全加入到优先队列中. ,队列中最小值为u(值为0),u出队列,对u的出边进行松弛(x.v.w),队列最小值…