先不要想其他的,首先要在大脑里形成概念! 最大似然估计是什么意思?呵呵,完全不懂字面意思,似然是个啥啊?其实似然是likelihood的文言翻译,就是可能性的意思,所以Maximum Likelihood可以直接叫做最大可能性估计,这就好理解了,就是要求出最大的可能性(下的那个参数). 一些最基本的概念:总体X,样本x,分布P(x:θ),随机变量(连续.离散),模型参数,联合分布,条件分布 而似然函数在形式上,其实就是样本的联合密度:L(θ)= L(x1,x2,-,xn:θ)= ΠP(xi:θ)…
最大似然估计&贝叶斯估计 与传统计量模型相对的统计方法,存在 1)参数的解释不同:经典估计:待估参数具有确定值它的估计量才是随机的.如果估计量是无偏的,该估计量的期望等于那个确定的参数.bayes待估参数服从某种分布的随机变量. 2)利用的信息不同:经估:只利用样本信息,bayes要求事先提供一个参数的先验分布,即人们对有关参数的主观认识,是非样本信息.在参数估计中它们与样本信息一起被利用. 3)对随机误差项的要求不同,经典估计除了最大似然法在参数估计中不要求知道随机误差项的具体分布形式在假设检…
转载声明:本文为转载文章,发表于nebulaf91的csdn博客.欢迎转载,但请务必保留本信息,注明文章出处. 原文作者: nebulaf91 原文原始地址:http://blog.csdn.net/u011508640/article/details/72815981 最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法,如果不理解这两…
[机器学习基本理论]详解最大似然估计(MLE).最大后验概率估计(MAP),以及贝叶斯公式的理解 https://mp.csdn.net/postedit/81664644 最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法,如果不理解这两种方法的思路,很容易弄混它们. 下文将详细说明MLE和MAP的思路与区别.先讲解MLE的相应知识.…
python 数学知识1 1,向量: 一个向量是一列数.这些数是有序排列的:通过次序中的索引,可以确定每个单独的数: 2, 矩阵: 由m x n 个数aij(i=1,2,3,…, m;  j=1,2,3,…,n) 排成m行n列的数表:简称m X n 矩阵: A = AmXn = (aij)mXn =(aij)   行数和列数都等于n的矩阵称为n阶矩阵或n阶方阵: 3,行列式:记作det(A) ,是一个将方阵A映射到实数的函数: (行列式等于矩阵特征值的乘积) ##################…
进击的Python[第十二章]:mysql介绍与简单操作,sqlachemy介绍与简单应用 一.数据库介绍 什么是数据库? 数据库(Database)是按照数据结构来组织.存储和管理数据的仓库,每个数据库都有一个或多个不同的API用于创建,访问,管理,搜索和复制所保存的数据.我们也可以将数据存储在文件中,但是在文件中读写数据速度相对较慢.所以,现在我们使用关系型数据库管理系统(RDBMS)来存储和管理的大数据量.所谓的关系型数据库,是建立在关系模型基础上的数据库,借助于集合代数等数学概念和方法来…
学贝叶斯方法时绕不过去的一个问题,现在系统地总结一下. 之前过于纠结字眼,似然和概率到底有什么区别?以及这一个奇妙的对等关系(其实连续才是f,离散就是p). 似然函数 | 似然值 wiki:在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性. 这里我们讨论的范围已经界定了,那就是在指定模型下(比如二项分布),我们观测数据和可能的模型参数之间的关系. (传统的贝叶斯定理的适用范围很广,是高度的总结推广,在似然函数里就不要过于推广了) 似然函数在直觉上就很好理解了,L(…
最大似然估计 似然与概率 在统计学中,似然函数(likelihood function,通常简写为likelihood,似然)和概率(Probability)是两个不同的概念.概率是在特定环境下某件事情发生的可能性,也就是结果没有产生之前依据环境所对应的参数来预测某件事情发生的可能性,比如抛硬币,抛之前我们不知道最后是哪一面朝上,但是根据硬币的性质我们可以推测任何一面朝上的可能性均为50%,这个概率只有在抛硬币之前才是有意义的,抛完硬币后的结果便是确定的:而似然刚好相反,是在确定的结果下去推测产…
第二章 置信区间估计 估计量和估计值的写法? 估计值希腊字母上边有一个hat 点估计中矩估计的原理? 用样本矩来估计总体矩,用样本矩的连续函数来估计总体矩的连续函数,这种估计法称为矩估计法.Eg:如果一阶矩则样本均值估计总体均值 公式化之后的表达: 其中的μ1的表达式: 矩估计和最大似然估计最终估计的特点是什么? 二项分布的均值两种估计都相同,正态分布的均值两种估计都相同.但是其他分布仍存在不同的现象. 无偏性是什么? 估计值的均值与总体均值相同,除中间值之外的部分是随机误差. 均值的无偏性特殊…