php实现斐波那契数列】的更多相关文章

using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace 斐波那契数列求和 { class Program { static void Main(string[] args) { Console.WriteLine()); Console.WriteLine()); Console.WriteLine()…
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围内的非负整数,请设计一个高效算法,计算第n项F(n).第一个斐波拉契数为F() = . 给定一个非负整数,请返回斐波拉契数列的第n项,为了防止溢出,请将结果Mod . 斐波拉契数列的计算是一个非常经典的问题,对于小规模的n,很容易用递归的方式来获取,对于稍微大一点的n,为了避免递归调用的开销,可以用…
//斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var reg = n1 + n2; console.log('第'+i+'个为:'+reg); n1 = n2;n2 = reg; } //解法2:开枝散叶,递推到一开始的1或2 // //以n=8 举例 // // 8 // / \ // / \ // / \ // 7 6 // / \ /\ // / \…
一.题目:斐波那契数列 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 二.效率很低的解法 很多C/C++/C#/Java语言教科书在讲述递归函数的时候,大多都会用Fibonacci作为例子,因此我们会对这种解法烂熟于心: public static long FibonacciRecursively(uint n) { ) { ; } ) { ; } ) + FibonacciRecursively(n - ); } 上述递归的解法有很严重的效…
斐波那契数列: 1,1,2,3,5,8,13,21,34,....     //求斐波那契数列第n项的值 //1,1,2,3,5,8,13,21,34... //1.递归: //缺点:当n过大时,递归深度过深,速度降低 int fib1(int n){ if (n == 1 || n == 2) return 1; return fib1(n - 1) + fib1(n - 2); } //2.非递归: 时间复杂度O(n) int fib2(int n){ if (n == 1 || n ==…
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请你求出 f(n) mod 1000000007 的值. 输入输出格式 输入格式: ·第 1 行:一个整数 n 输出格式: 第 1 行: f(n) mod 1000000007 的值 输入输出样例 输入样例#1: 5 输出样例#1: 5 输入样例#2: 10 输出样例#2: 55 说明…
递归函数 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数.举个例子,我们来计算阶乘 n! = 1 * 2 * 3 * ... * n,用函数 fact(n)表示,可以看出:fact(n) = n! = 1 * 2 * 3 * ... * (n-1) * n = (n-1)! * n = fact(n-1) * n所以,fact(n)可以表示为 n * fact(n-1),只有n=1时需要特殊处理.于是,fact(n)用递归的方式写出来就是: def fact(…
java编程基础--斐波那契数列 问题描述:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 思路:可能出现的情况:(1) n=1 ,一种方法 ;(2)n=2,两种方法;(3)对于第n阶,只能从第n-1阶或者n-2阶跳上,所以得出结论: | 1, (n=1) f(n) =     | 2, (n=2) | f(n-1)+f(n-2) ,(n>2,n为整数) public static void main(String[] args) { int a =2…
对于JS初学者来说,斐波那契数列一直是个头疼的问题,总是理不清思路. 希望看完这篇文章之后会对你有帮助. 什么是斐波那契数列 : 答: 斐波那契数列,又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为"兔子数列".  指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.-- 题目:有个人想知道,一年之内一对兔子能繁殖多少对?于是就筑了一道围墙把一对兔子关在里面.已知一对兔子每个月可以生一对小兔子,而一对…
斐波拉契数列是指这样一个数列: F(1)=1; F(2)=1; F(n)=F(n-1)+F(n); public class Solution { public int Fibonacci(int n) { int preNum = 1; int prePreNum = 0; int result = 0; if(n ==0){ return 0; } if(n == 1){ return 1; } for(int i = 2; i <= n; i ++){ result = preNum +…
看到公司的笔试题中有一道题让写斐波那契数列,自己忙里偷闲写了一下 什么是斐波那契数列:斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368这个数列从第二项开始,每一项都等于前两项之和. 特别指出:第0项是0,第1项是第一个1. 注:此时a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3,n∈N*)…
斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci),生于公元1170年,卒于1250年,籍贯是比萨.他被人称作“比萨的列昂纳多”.1202年,他撰写了<算盘全书>(Liber Abacci)一书.他是第一个研究了…
描述 在数学上,斐波那契数列(Fibonacci Sequence),是以递归的方法来定义: F0 = 0 F1 = 1 Fn = Fn - 1 + Fn - 2 用文字来说,就是斐波那契数列由0和1开始,之后的斐波那契数就由之前的两数相加.首几个斐波那契数是: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946,……………… 特别指出:0不是第一项,而是第…
题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. n<=39 思路: 不考虑递归 用递推的思路 AC代码: class Solution { public: int Fibonacci(int n) { ) ; int fn1,fn2,fn; fn1=fn2=; ||n==) ; ;i<n;i++) { fn=fn1+fn2; fn1=fn2; fn2=fn; } return fn; } };…
一 //1,1,2,3,5,8,13,21这个数列 斐波那契 数列(肥波哪弃) //得到第9项是几? /*******************************111111111递归的思想***********************************/ function digui(index){ //index-2=0 index的最小值是3 if (index<0) { //负数为0 我自己写的 return 0; } if (index<=2) {//第一项 第二项都为1,…
斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368........ 如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式::F(n)=F(n-1)+F(n-2) .显然这是一个线性递推数列. 通项公式:   ,又称为"比内公式",是用无理数表示有理数的一个范例. 斐波拉契数列也可…
递归.递推计算斐波那契数列第n项的值: #include <stdio.h> long long fact(int n); //[递推]计算波那契数列第n个数 long long fact2(int n);//[递归] int main(int argc, char *argv[]) { ; ) { printf("%d %I64d %I64d\n",i,fact(i),fact2(i)); i++; } ; } long long fact(int n) //[递推]计算…
更新:我的同事Terry告诉我有一种矩阵运算的方式计算斐波那契数列,更适于并行.他还提供了利用TBB的parallel_reduce模板计算斐波那契数列的代码(在TBB示例代码的基础上修改得来,比原始代码更加简洁易懂).实验结果表明,这种方法在计算的斐波那契数列足够长时,可以提高性能. 矩阵方式计算斐波那契数列的原理: 代码: #include <tbb/task_scheduler_init.h> #include <tbb/blocked_range.h> #include &…
Reverse反转算法 #include <iostream> using namespace std; //交换的函数 void replaced(int &a,int &b){ int t = a; a = b; b = t; } //反转 void reversed(int a[],int length){ ; ; while (left < right) { replaced(a[left], a[right]); left++; right--; } } voi…
codevs 1574 广义斐波那契数列  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond   题目描述 Description 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. 输入描述 Input Description 输入包含一行6个整数.依次是p,q,a1,a2,n,m,其中在p,q,a1,a2整数范围内,n和m在…
最近因为一些原因需要接触一些ACM的东西,想想写个blog当作笔记吧!同时也给有需要的人一些参考 话不多说,关于斐波那契数列(Fibonacci sequence)不了解的同学可以看看百度百科之类的,http://baike.baidu.com/link?url=KjZumXHZb0wCxYHW4qcfvJF2HIKFIxPuznpBUFweLXhboe6T48gT454LgnxralFKXYJ0-sMoeonnDOC_axuPfK 有条件的也可以看看wiki,https://zh.wikipe…
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 请你求出第n个斐波那契数列的数mod(或%)2^31之后的值.并把它分解质因数. 输入输出格式 输入格式: n 输出格式: 把第n个斐波那契数列的数分解质因数. 输入输出样例 输入样例#1: 5 输出样例#1: 5=5 输入样例#2: 6 输出样例#2: 8=2*2*2 说明 n<=48 97年的陈…
解题思路: 一只母猪生下第二头后立马被杀掉,可以这样想即,生下第二头便被杀掉,可以看成母猪数量没变 第一天 1 第二天 2 第三天 3 :第一头生第二头后杀掉还是1头,第二头再加上第二头生下的,一共三头 所以只需要前一天的数量 + 前前一天的数量 = 当天的数量. 可以理解,母猪只生下一头后便不生了(i-2),还要加上下一个生的(i-1). 斐波那契数列:f[i]  =  f[i - 1] + f[i - 2] Ac code : #include<bits/stdc++.h> using n…
一只小蜜蜂... Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Submission(s): Accepted Submission(s): Problem Description 有一只经过训练的蜜蜂只能爬向右侧相邻的蜂房,不能反向爬行.请编程计算蜜蜂从蜂房a爬到蜂房b的可能路线数. 其中,蜂房的结构如下所示. Input 输入数据的第一行是一个整数N,表示测试实例的个数,然后是N 行数据,每行包含两个…
斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)在现代物理.准晶体结构.化学等领域,斐波纳契数列都有直接的应用.————摘自百度百科 公式: F(n)=F(n…
斐波那契数列:0.1.1.2.3.5.8.13………… 他的规律是,第一项是0,第二项是1,第三项开始(含第三项)等于前两项之和. > 递归实现 看到这个规则,第一个想起当然是递归算法去实现了,于是写了以下一段: public class RecursionForFibonacciSequence { public static void main(String[] args) { System.out.println(recursion(10)); } public static double…
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 3024    Accepted Submission(s): 930 Problem Description M斐波那契数列F[n]是一种整数数列,它的定义如下:F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 )现在给出a, b…
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 1534    Accepted Submission(s): 435 Problem Description M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a,…
这道题目可以先转化: 令f(1) = 5+2√6 f(2) = f(1)*(5+2√6) ... f(n) = f(n-1)*(5+2√6) f(n) = f(n-1)*(10-(5-2√6)) = 10*f(n-1)-(5-2√6)f(n-1) = 10*f(n-1) - 10/(5+2√6) f(n-1) = 10*f(n-1) - 10/(5+2√6) * (5+2√6)f(n-2) = 10*f(n-1) - f(n-2) 那么就可以写成矩阵相乘的形式了 (f(n) , f(n-1))…
概念: 斐波那契数列即表达式为 a(n) = a(n-1)+a(n-2) 其中 a1 =0 a2 = 1  的数列 代码实现功能: 该类实现初始化给出n,通过调用getValue函数得出a(n)的值 <?php class Fbnq { private $num_count = 0; private $Fbnq_arr = array(0, 1); // 0,1是初始也是默认的值 注意数组下标比数列下标多一 public function __construct($num_count) { if…