[NOI2010]海拔(最小割)】的更多相关文章

题目描述 YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个 正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向道路 (简称道路),每条双向道路连接主干道上两个相邻的交叉路口.下图为一张YT市的地图(n = 2),城市被划分为2 ×2个区域,包括3×3个交叉路口和12条双向道路. 小Z作为该市的市长,他根据统计信息得到了每天上班高峰期 间YT市每条道路两个方向的人流量,即在高峰…
题目链接 想一下能猜出,最优解中海拔只有0和1,且海拔相同的点都在且只在1个连通块中. 这就是个平面图最小割.也可以转必须转对偶图最短路,不然只能T到90分了..边的方向看着定就行. 不能忽略回去的边,因为最小割的形状可能很奇怪. //16232kb 456ms //平面图点数就是(n-1)^2了.但是边数不是4(n-1)^2,是4n(n-1)!.. #include <queue> #include <cstdio> #include <cctype> #includ…
题目描述 YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向道路(简称道路),每条双向道路连接主干道上两个相邻的交叉路口.下图为一张YT市的地图(n = 2),城市被划分为2×2个区域,包括3×3个交叉路口和12条双向道路. 小Z作为该市的市长,他根据统计信息得到了每天上班高峰期间YT市每条道路两个方向的人流量,即在高峰期间沿着…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2007 一个点的高度一定不是0就是1.答案一定形如一个左上角的连通块全是0的点.一个右下角的连通块全是1的点. 注意从东到西还有从南到北的边也有用!因为不一定是一个阶梯形的,还可以拐来拐去,只是一定是两个连通块罢了. 所以最小割一下那个分界线就行了.但会TLE. #include<cstdio> #include<cstring> #include<algorithm&g…
题目链接 SOLUTION 想一下最优情况下肯定让平路或下坡尽量多,于是不难想到这样构图:包括左上角的一部分全部为\(0\),包括右下角的一部分全部为\(1\),于是现在问题转化为求那个分界线是什么. 画一画图,发现每条分界线对应一组割,转化成了最小割模型,然后因为数据范围对\(dinic\)不友好,化成对偶图跑最短路就行了 注意不能只考虑向下和向右的边 代码: #include <algorithm> #include <iostream> #include <cstdli…
2007: [Noi2010]海拔 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2095  Solved: 1002[Submit][Status][Discuss] Description YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向道路(简称道路),每条双向道路连接主…
B20J_2007_[Noi2010]海拔_平面图最小割转对偶图+堆优化Dij 题意:城市被东西向和南北向的主干道划分为n×n个区域.城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向道路,已知每天每条道路两个方向的人流量,即沿着该方向通过这条道路的人数.每一个交叉路口都有不同的海拔高度值,每向上爬h的高度,就需要消耗h的体力.如果是下坡的话,则不需要耗费体力.已知城市西北角的交叉路口海拔为0,东南角的交叉路口海拔为1(如上图所示),但其它交叉路口的海拔高度都无法得知.小Z想知道…
[BZOJ2007][NOI2010]海拔(最小割,平面图转对偶图,最短路) 题面 BZOJ 洛谷 Description YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个 正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向道路 (简称道路),每条双向道路连接主干道上两个相邻的交叉路口.下图为一张YT市的地图(n = 2),城市被划分为2 ×2个区域,包括3×3个交叉路口和1…
[问题描写叙述] YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见.能够将YT市看作 一个正方形,每个区域也可看作一个正方形.从而.YT城市中包含(n+1)×(n+1)个交叉路口和2n×(n+1)条双向道路(简称道路),每条双向 道路连接主干道上两个相邻的交叉路口.下图为一张YT市的地图(n = 2),城市被划分为2×2个区域,包含3×3个交叉路口和12条双向道路. 小Z作为该市的市长.他依据统计信息得到了每天上班高峰期间YT市每条道路两个方向的人流量.即在高…
$ \color{#0066ff}{ 题目描述 }$ YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作 一个正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向道路(简称道路),每条双向 道路连接主干道上两个相邻的交叉路口.下图为一张YT市的地图(n = 2),城市被划分为2×2个区域,包括3×3个交叉路口和12条双向道路. 小Z作为该市的市长,他根据统计信息得到了每天上班高峰期间…
题面太长啦,请诸位自行品尝—>海拔 分析: 这是我见过算法比较明显的最小割题目了,很明显对于某一条简单路径,海拔只会有一次变换. 而且我们要最终使变换海拔的边权值和最小. 我们发现变换海拔相当于将图割开,左上右下两个点分别属于两个不同的集合,那这就是一个很形象的最小割模型. 我们只需要平面图转转对偶图,将图中每个面变成点,连边跑最短路即可. 转换的细节可能有些麻烦,大家慢慢理解. 代码: #include<bits/stdc++.h> #define pi pair<int,int…
问题描述 BZOJ2007 LG2046 题解 发现左上角海拔为 \(0\) ,右上角海拔为 \(1\) . 上坡要付出代价,下坡没有收益,所以有坡度的路越少越好. 所以海拔为 \(1\) 的点,和海拔为 \(0\) 的点,一定能够在这个网格图中由一条连续的线划分为两个集合. 将一个图中的所有结点划分为两个集合,显然为最小割模型. 又发现是网格图,所以平面图最小割转化为对偶图最短路. \(\mathrm{Code}\) 不删调试见祖宗 #include<bits/stdc++.h> using…
建立平面图的对偶图,把最小割转化成最短路问题 Dijkstra算法堆优化 (被输入顺序搞WA了好几次T_T) #include <cstdio> #include <cstring> #include <algorithm> #include <queue> ; const int maxV=maxN*maxN; const int inf=0x3f3f3f3f; struct Edge { int to,next; int dist; void assig…
题目链接:BZOJ - 2007 题目分析 首先,左上角的高度是 0 ,右下角的高度是 1.那么所有点的高度一定要在 0 与 1 之间.然而选取 [0, 1] 的任何一个实数,都可以用整数 0 或 1 来替换,获得同样的效果. 虽然输出的答案要求是四舍五入到整数,但其实答案就是一个整数! 那么高度就一定是 0 或 1 了,并且还有一点,所有选 0 的点都连通,所有选 1 的点都联通.因为如果一个选 0 的点被选 1 的点包围,那么它选 1 更优. 于是整个图中所有的点分成了与左上角相连的集合 A…
传送门 首先一个不知道怎么证的结论:任意点的\(H\)只会是\(0\)或\(1\) 那么可以发现原题的本质就是一个最小割,左上角为\(S\),右下角为\(T\),被割开的两个部分就是\(H=0\)与\(H=1\)的部分 直接上Dinic似乎有90pts 然后可以发现原图是一个经典的平面图 于是将平面图最小割转化成对偶图最短路模型,然后堆优化Dijkstra即可. 关于平面图最小割转化为对偶图最短路可以看这个 #include<bits/stdc++.h> #define id(i , j) (…
题目链接 BZOJ2007 题解 这是裸题啊,,要是考试真的遇到就好了 明显是最小割,而且是有来回两个方向 那么原图所有向右的边转为对偶图向下的边 向左的边转为向上 向下转为向左 向上转为向右 然后跑一遍最短路即可 #include<algorithm> #include<iostream> #include<cstring> #include<cstdio> #include<vector> #include<queue> #inc…
传送门 不明白为什么大佬们一眼就看出这是最小割…… 所以总而言之这就是一个最小割我也不知道为什么 然后边数太多直接跑会炸,所以要把平面图转对偶图,然后跑一个最短路即可 至于建图……请看代码我实在无能为力 //minamoto #include<iostream> #include<cstdio> #include<cstring> #include<queue> using namespace std; #define getc() (p1==p2&…
上来就跑3e5的最大流--脑子抽了 很容易看出,每个地方的海拔都是0或1因为再高了没有意义,又,上去下来再上去没有意义,所以最后一定是从s连着一片0,剩下连着t一片1,然后有贡献的就是01交接的那些边 跑个最小割就好了 然而跑不过,考虑建对偶图,也就是网格的空当成一个点,然后这些点之间互相连边的权值为原图穿过他们的边的权值,建立一对原点汇点,分别连左下边界的新点和右上边界的新点,这样跑最短路就是最小割 方便的建图是把所有边转90度就是新边 #include<iostream> #include…
题解: 首先,我们不难猜到高度只有 $0$ 或 $1$ 两种可能,而且高度为 0 的地区组成一个联通块,高度为 1 的地区组成一个联通块.只有这样,人们所耗费的体力才是最小的.得出这个结论,题目就成了求平面图的最小割.由于最大流等于最小割,网络流的做法是显然的,不过数据过大,不加优化是很难通过的. 我们考虑将平面图转对偶图:我们知道平面图的最小割就等于对偶图的最短路.本题和 bzoj1002 狼抓兔子最显著的差别就是本题的边都是有向的,而狼抓兔子的边都是无向的.读者可以自己在草纸上画一画切割方案…
[题目大意] 城市被东西向和南北向的主干道划分为n×n个区域,包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向道路.现得到了每天每条道路两个方向的人流量.每一个交叉路口都有海拔,每向上爬h的高度,就需要消耗h的体力.如果是下坡的话,则不需要耗费体力.城市西北角的交叉路口海拔为0,东南角的交叉路口海拔为1.现在知道每条路两个方向的人流量,在最理想的情况下(即你可以任意假设其他路口的海拔高度),求每天所有人爬坡所消耗的总体力和的最小值. [思路] 显然是一个平面图最小割,最基础的平面图最…
首先注意到,把一个点的海拔定为>1的数是毫无意义的.实际上,可以转化为把这些点的海拔要么定为0,要么定为1. 其次,如果一个点周围的点的海拔没有和它相同的,那么这个点的海拔也是可以优化的,即把这个点变为周围海拔一样的显然能使结果变优. 于是问题就变成了,这个图的海拔为0的联通块和起点连在一起,海拔为1的联通块和终点连在一起. 此即为经典的最小割. 由于此图为平面图,我们可以使用平面图最小割转对偶图最短路优化算法. 因为这是有向图,因此构建对偶图的时候注意边的方向即可. # include <c…
题意 https://www.lydsy.com/JudgeOnline/problem.php?id=2007 思路 首先可以发现一个结论,每个位置的海拔只有能是 \(0\) 和 \(1\) ,然后这道题就是求以人流量为边权的最小割. 直接用网络流求最小割似乎会T .但这张图是个平面图,可以转化成它的对偶图求最短路,唯一要注意的一点是,这张无向图每条边正走和反走边权是不同的,于是转化对偶图的时候把每条边逆时针翻转 \(90\) 度即可,正确性讲不清楚,需要感性理解. 代码 #include<b…
bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路) 题目描述: bzoj  luogu 题解时间: 首先考虑海拔待定点的$h$都应该是多少 很明显它们都是$0$或$1$,并且所有$0$连成一块,所有$1$连成一块 只有海拔交界线对答案有贡献,变成了最小割 但是数据范围很明显不能直接跑网络流 由于这是一个平面图,所以根据套路想到: 平面图最小割=对偶图最小环=最外一块面积分成$S$和$T$跑最短路 从左上角往右下角画一条线把外面一块分成$S$和$T$之后建图. 但是要注意这…
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2007 题意:给出一个n*n的格子,那么顶点显然有(n+1)*(n+1)个.每两个相邻顶点之间有两条边,这两条边是有向的,边上有权值..左上角为源点,右下角为汇点,求s到t的最小割. 思路:很明显这是一个平面图,将其转化为最 短路.我们将s到t之间连一条边,左下角为新图的源点S,右上角区域为新图的终点T,并且为每个格子编号.由于边是有向的,我们就要分析下这条边应该是哪 个点向哪个点的边.…
2007: [Noi2010]海拔 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2410  Solved: 1142[Submit][Status][Discuss] Description YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个 正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向道路 (简称道路),每条双向道路连…
2007: [Noi2010]海拔 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 1302  Solved: 612[Submit][Status] Description YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向道路(简称道路),每条双向道路连接主干道上两个相邻的交叉…
luogu2046[NOI2010]海拔 对偶图优化 链接 https://www.luogu.org/problemnew/show/P2046 思路 海拔一定是0或者1,而且会有一条01交错的分界线. 转化为最小割,用对偶图优化求得.最小割论文写的特清楚. 代码 #include <iostream> #include <cstring> #include <queue> #include <cstdio> #include <algorithm&…
2007: [Noi2010]海拔 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2504  Solved: 1195 Description YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个 正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向道路 (简称道路),每条双向道路连接主干道上两个相邻的交叉路口.下图为一张YT市的地…
2007: [Noi2010]海拔 https://www.lydsy.com/JudgeOnline/problem.php?id=2007 分析: 平面图最小割. S在左下,T在右上,从S到T的一个路径使得路径右下方全是1,左上方全是0. 一个问题:每个点的高度只能是0/1,所以有些边是一定不能选的,就让它连向S,不影响. 代码: /* 平面图最小割 */ #include<cstdio> #include<algorithm> #include<cstring>…
2007: [Noi2010]海拔 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2742  Solved: 1318[Submit][Status][Discuss] Description YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个 正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向道路 (简称道路),每条双向道路连…