[NOI2014]购票(斜率优化+线段树)】的更多相关文章

题目描述 今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会. 全国的城市构成了一棵以SZ市为根的有根树,每个城市与它的父亲用道路连接.为了方便起见,我们将全国的 n 个城市用 1 到 n 的整数编号.其中SZ市的编号为 1.对于除SZ市之外的任意一个城市 v,我们给出了它在这棵树上的父亲城市 fv 以及到父亲城市道路的长度 sv. 从城市 v 前往SZ市的方法为:选择城市 v 的一个祖先 a,支付购票的费用,乘坐交通工具到达 a…
建议到UOJ上去交 题解 一眼\(DP\),先把转移方程写出来 设\(dp[i]\)为从点\(i\)出发到点\(1\)的最小费用,那么存在转移 \[f[i]=min\{f[j]+(d[i]-d[j])p[i]\}+q[i]=min\{f[j]-d[j]p[i]\}+d[i]*p[i]+q[i]\] 这个式子看起来可以斜率优化啊,往下化几步,可以得到类似下面的东西: 若\(d[j] < d[k]\),则当\(\frac{dp[j]-dp[k]}{d[j]-d[k]}\geqslant p[i]\)…
题目描述  给出一棵以1为根的带边权有根树,对于每个根节点以外的点$v$,如果它与其某个祖先$a$的距离$d$不超过$l_v$,则可以花费$p_vd+q_v$的代价从$v$到$a$.问从每个点到1花费的最小代价(中途可以经停其它点) 输入 第 1 行包含2个非负整数 n,t,分别表示城市的个数和数据类型(其意义将在后面提到).输入文件的第 2 到 n 行,每行描述一个除SZ之外的城市.其中第 v 行包含 5 个非负整数 $f_v,s_v,p_v,q_v,l_v$,分别表示城市 v 的父亲城市,它…
[NOI2014]购票 题目描述 今年夏天,NOI在SZ市迎来了她30周岁的生日. 来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会. 全国的城市构成了一棵以SZ市为根的有根树,每个城市与它的父亲用道路连接. 为了方便起见,我们将全国的 n 个城市用 1 到 n 的整数编号.其中SZ市的编号为 1. 对于除SZ市之外的任意一个城市 v,我们给出了它在这棵树上的父亲城市 fv 以及到父亲城市道路的长度 sv. 从城市 v 前往SZ市的方法为:选择城市 v 的一个祖先 a,支付购…
貌似网上大部分题解都是CDQ分治+点分治然后再斜率优化DP,我貌似并没有用这个方法. 这一题跟这题有点像,只不过多了一个l的限制 如果说直接跑斜率优化DP,存储整个序列的话,显然是不行的,如图所示(图鸣谢某巨佬) 所以我们需要种一棵线段树,每个线段树内存储一个存当前区间凸包的单调栈,弹出插入操作跟刚刚说的那题一样. 查询的话就查询下整个区间中所有凸包上的最大值就可以了. 时间复杂度:$O(n\log^2\ n)$.写起来并不算很困难. #include<bits/stdc++.h> #defi…
3672: [Noi2014]购票 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 1749  Solved: 885[Submit][Status][Discuss] Description  今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会.        全国的城市构成了一棵以SZ市为根的有根树,每个城市与它的父亲用道路连接.为了方便起见,我们将全国的 n 个城市用 1 到…
题目大意: 略 题面传送门 怎么看也是一道$duliu$题= = 先推式子,设$dp[x]$表示到达$x$点到达1节点的最小花费 设$y$是$x$的一个祖先,则$dp[x]=min(dp[y]+(dis[x]-dis[y])*p[x]+q[x])$,且$dis[x]-dis[y] \leq lim[x]$ 猜也能猜出来是斜率优化 展开,$dp[y]=p[x]*dis[y]\;+dp[x]-dis[x]*p[x]+q[x]$ 此外,$dis$在上述式子中作为一次函数$y=kx+b$的$x$项,且$…
[Usaco2005 Dec] Cleaning Shifts 清理牛棚 题目描述 Farmer John's cows, pampered since birth, have reached new heights of fastidiousness. They now require their barn to be immaculate. Farmer John, the most obliging of farmers, has no choice but hire some of th…
正题 题目链接:http://noi.ac/problem/2139 题目大意 给出\(n\)个数字的序列\(a_i\).然后选出一个不降子序列最大化子序列的\(a_i\)和减去没有任何一个数被选中的区间数量. \(1\leq n\leq 10^6,1\leq a_i\leq 10^8\) 解题思路 嗯,考虑朴素的\(dp\)方程,设\(f_i\)表示以\(i\)为末尾的值就有 \[f_i=f_j+a_i+\frac{(i-j-1)(i-j)}{2} \] 然后展开整理一下都乘二就是 \[f_i…
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/转载请注明出处,侵权必究,保留最终解释权! Description   今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会.        全国的城市构成了一棵以SZ市为根的有根树,每个城市与它的父亲用道路连接.为了方便起见,我们将全…
速度是没有极限的. 众说周知,Dijikstra是一种最短路算法,复杂度为O(V^2+E) 朴素Dijikstra void Dijikstra(int s){ memset(dis,inf,sizeof(dis)); dis[s]=0; for(int i=1;i<=n;++i){ int maxs=inf,u=0; for(int j=1;j<=n;++j) if(!vis[j]&&dis[j]<maxs) maxs=dis[j],u=j; vis[u]=1; for…
[BZOJ3672][NOI2014]购票(线段树,斜率优化,动态规划) 题解 首先考虑\(dp\)的方程,设\(f[i]\)表示\(i\)的最优值 很明显的转移\(f[i]=min(f[j]+(dep[i]-dep[j])·p[i])+q[i]\) 其中满足\(dep[i]-dep[j]\le L[i]\) 然后就可以写出一个\(O(n^2)\)的做法啦 #include<iostream> #include<cstdio> #include<cstdlib> #in…
前言 刚开始看着两道题感觉头皮发麻,后来看看题解,发现挺好理解,只是代码有点长. BZOJ 3672[NOI2014]购票 中文题面,题意略: BZOJ 3672[NOI2014]购票 设f(i)f(i)f(i)表示iii点所花的最小费用,可以写出方程式f(i)=min{ f(j)+pi(disi−disj)+qi }f(i)=min\{\ f(j)+p_i(dis_i-dis_j)+q_i\ \}f(i)=min{ f(j)+pi​(disi​−disj​)+qi​ }其中jjj是iii的祖先…
题目链接 UOJ #7 题解 首先这一定是DP!可以写出: \[f[i] = \min_{ancestor\ j} \{f[j] + (d[j] - d[i]) * p[i] + q[i]\}\] 其中\(d[i]\)表示树上\(i\)的深度. 整理一下式子: \[f[i] = \min_{ancestor\ j} \{f[j] - d[j] * p[i]\} + d[i] * p[i] + q[i]\] 看起来可以斜率优化? 推一下式子:设\(j < k\),\(i\)从\(j\)转移优于从\…
[BZOJ3672][Noi2014]购票 Description  今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会.        全国的城市构成了一棵以SZ市为根的有根树,每个城市与它的父亲用道路连接.为了方便起见,我们将全国的 n 个城市用 1 到 n 的整数编号.其中SZ市的编号为 1.对于除SZ市之外的任意一个城市 v,我们给出了它在这棵树上的父亲城市 fv  以及到父亲城市道路的长度 sv. 从城市 v 前往SZ市…
有点类似NOI2014购票 首先有方程$f(i)=min\{f(j)+(dep_i-dep_j)*p_i+q_i\}$ 这个显然是可以斜率优化的... $\frac {f(j)-f(k)}{dep_j-dep_k}<p_i$ $p_i$是单调的,于是可以单调队列,当遍历完一个子树的时候,必须复原单调队列到进入这棵子树前的样子,这个用可持久化线段树维护可持久化数组显然可做... 当然有更聪明的方法. 单调队列队头出去的时候实际上队列信息不会被覆盖,于是恢复左端点只要记录进入当前点前的左端点即可.…
3672: [Noi2014]购票 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 1177  Solved: 562[Submit][Status][Discuss] Description  今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会.        全国的城市构成了一棵以SZ市为根的有根树,每个城市与它的父亲用道路连接.为了方便起见,我们将全国的 n 个城市用 1 到…
3672: [Noi2014]购票 Description  今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会.        全国的城市构成了一棵以SZ市为根的有根树,每个城市与它的父亲用道路连接.为了方便起见,我们将全国的 n 个城市用 1 到 n 的整数编号.其中SZ市的编号为 1.对于除SZ市之外的任意一个城市 v,我们给出了它在这棵树上的父亲城市 fv  以及到父亲城市道路的长度 sv. 从城市 v 前往SZ市的方法为…
BZOJ_3672_ [Noi2014]购票_CDQ分治+斜率优化 Description  今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会.        全国的城市构成了一棵以SZ市为根的有根树,每个城市与它的父亲用道路连接.为了方便起见,我们将全国的 n 个城市用 1 到 n 的整数编号.其中SZ市的编号为 1.对于除SZ市之外的任意一个城市 v,我们给出了它在这棵树上的父亲城市 fv  以及到父亲城市道路的长度 sv.…
\(NOI2014\)购票 哇终于可以碰电脑了赶快切些火题找找感觉. 拿到这道题的时候发现简单的斜率优化推一推可以秒掉平方做法,然后一条链也可以做. 然后呢... 卧槽这个在一棵树上怎么办啊. 大力\(YY\)了一个数据结构维护区间凸壳的东西,然而我感觉这东西好恶心啊我不会啊... 明明就是因为懒 然后翻了一波题解发现可以用点分治,然而都讲得非常不清楚.... 看了好久才看懂怎么做吧...我这里详细地记录一下.. 详细是不存在的这辈子的不存在的 总体思想是,每次点分治的时候有两个关键点,一个是分…
s弄成前缀和(到根), dp(i) = min(dp(j) + (s(i)-s(j))*p(i)+q(i)). 链的情况大家都会做...就是用栈维护个下凸包, 插入时暴力弹栈, 查询时就在凸包上二分/三分. 扩展到树上的话, 就先树链剖分, 然后就变成链上的情况了, 线段树每个结点处理出对应的区间的凸包. 对于x, 用Root到fa[x]这段路径来更新x. 我们知道1段路径会剖成 ≤ log N 段, 然后每段(区间)只会影响log N个线段树结点, 加上每次O(log N)三分/二分, 时间复…
Description  今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会.全国的城市构成了一棵以SZ市为根的有根树,每个城市与它的父亲用道路连接.为了方便起见,我们将全国的 n 个城市用 1 到 n 的整数编号.其中SZ市的编号为 1.对于除SZ市之外的任意一个城市 v,我们给出了它在这棵树上的父亲城市 fv  以及到父亲城市道路的长度 sv.从城市 v 前往SZ市的方法为:选择城市 v 的一个祖先 a,支付购票的费用,乘坐交…
Description 今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会. 全国的城市构成了一棵以SZ市为根的有根树,每个城市与它的父亲用道路连接.为了方便起见,我们将全国的 n 个城市用 1 到 n 的整数编号.其中SZ市的编号为 1.对于除SZ市之外的任意一个城市 v,我们给出了它在这棵树上的父亲城市 fv 以及到父亲城市道路的长度 sv. 从城市 v 前往SZ市的方法为:选择城市 v 的一个祖先 a,支付购票的费用,乘坐交…
[BZOJ4311]向量(线段树分治,斜率优化) 题面 BZOJ 题解 先考虑对于给定的向量集,如何求解和当前向量的最大内积. 设当前向量\((x,y)\),有两个不同的向量\((u1,v1),(u2,v2)\),并且\(u1>u2\) 假设第一个向量的结果优于第二个. \(xu1+yv1>xu2+yv2\) 移项可以得到 \(x(u1-u2)>y(v2-v1)\) 所以\(x/y>(v2-v1)/(u1-u2)\) 也就是\(-x/y>(v1-v2)/(u1-u2)\) 右…
[NOI2014]购票 链接:http://uoj.ac/problem/7 因为太麻烦了,而且暴露了我很多学习不扎实的问题,所以记录一下具体做法. 主要算法:点分治+凸包优化斜率DP. 因为$q_i$不单调,所以需要在凸包上二分求最优解. 因为有$L_i$的限制,并且删除凸包左边的点会导致一些问题,所以就改变枚举顺序(倒着加入祖先链),使问题变成不用删点.因此直接套用凸包二分求解的模板. 大致流程: Tree_Divide_conquer(fa[x]).//先求出祖先链的Dp值 Get_all…
题目链接 BZOJ3672 题解 如果暂时不管\(l[i]\)的限制,并假使这是一条链 设\(f[i]\)表示\(i\)节点的最优答案,我们容易得到\(dp\)方程 \[f[i] = min\{f[j] + (d[i] - d[j])p[i] + q[i]\}\] 显而易见可以斜率优化 化为 \[f[j] = p[i]d[j] + f[i]\] 那么决策点就是\((d[j],f[j])\),决策就是用斜率为\(p[i]\)的直线截得最小截距 显然维护下凸包即可,而且\(d[j]\)单调,可以逐点…
第二道线段树分治. 首先设当前向量是(x,y),剩余有两个不同的向量(u1,v1)(u2,v2),假设u1>u2,则移项可得,若(u1,v1)优于(u2,v2),则-x/y>(v1-v2)/(u1-u2),然后维护上凸壳后进行三分即可,复杂度O(nlog2n),如果将询问排序扫一遍,可以优化到O(nlogn),当然我没写. #include<bits/stdc++.h> #define lson l,mid,rt<<1 #define rson mid+1,r,rt&l…
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ7.html 题解 这题是Unknown的弱化版. 如果这个问题出在序列上,那么显然可以CDQ分治 + 斜率优化 + 凸包上二分来做. 那么它出在树上? 点分治. 写挂了好多地方调了好久,自闭了. 代码 #pragma GCC optimize("Ofast","inline") #include <bits/stdc++.h> #define clr(x) me…
这题的加强版,多了一个$l_i$的限制,少了一个$p_i$的单调性,难了好多... 首先有方程$f(i)=min\{f(j)+(dep_i-dep_j)*p_i+q_i\}$ $\frac {f(j)-f(k)}{dep_j-dep_k}<p_i$ 假如没有$l_i$的限制,实际上就是上面那题... 如果多了$l_i$的限制会有什么影响呢? 类似上图的情况...红线是$l_i$的限制,如果是单调队列写法的话,P点会被删掉,但实际上P点依然有可能成为最优决策点... 这个时候一个单调队列的写法就不…
首先易得方程,且经过变换有 $$\begin{aligned} f_i &= \min\limits_{dist_i - lim_i \le dist_j} \{f_j + (dist_i - dist_j)p_i + q_i\} \\ f_j &= p_idist_j + f_i - dist_ip_i - q_i \end{aligned}$$ 在一条直线上时,斜率优化可以用普通$CDQ$分治实现(会不会过于麻烦?),那么对于在树上斜率优化时,考虑点分治 这时就在点分治中运用$CDQ$…