洛谷P4169 天使玩偶 CDQ分治】的更多相关文章

还是照着CDQ的思路来. 但是有一些改动: 要求4个方向的,但是可爱的CDQ分治只能求在自己一个角落方向上的.怎么办?旋转!做4次就好了. 统计的不是和,而是——max!理由如下: 设当前点是(x,y),目标点是(x',y'),那么所求的|x-x'|+|y-y'|首先用旋转大法化为x-x'+y-y',然后我们发现这个东西其实就是x+y-x'-y'=(x+y)-(x'+y'),而x+y我们是已知的.所以我们求一下max(x'+y')即可.具体实现是对树状数组魔改. 然后交上去发现狂T不止... 疯…
[BZOJ2716] [Violet 3]天使玩偶(CDQ分治) 题面 Ayu 在七年前曾经收到过一个天使玩偶,当时她把它当作时间囊埋在了地下.而七年后 的今天,Ayu 却忘了她把天使玩偶埋在了哪里,所以她决定仅凭一点模糊的记忆来寻找它. 我们把 Ayu 生活的小镇看作一个二维平面坐标系,而 Ayu 会不定时地记起可能在某个点 (xmy) 埋下了天使玩偶:或者 Ayu 会询问你,假如她在 (x,y) ,那么她离近的天使玩偶可能埋下的地方有多远. 因为 Ayu 只会沿着平行坐标轴的方向来行动,所以…
先cdq分治, 然后要处理点对答案的贡献, 可以以询问点为中心分成4个区域, 然后去掉绝对值(4种情况讨论), 用BIT维护就行了. -------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm> #include<cctype>   using namespace std;   #def…
洛谷P3810 陌上花开 传送门 题解: CDQ分治模板题. 一维排序,二维归并,三维树状数组. 核心思想是分治,即计算左边区间对右边区间的影响. 代码如下: #include <bits/stdc++.h> using namespace std; typedef long long ll; const int N = 200005; int n, k, m; struct node{ int x, y, z, id, w; bool operator < (const node &a…
原题 已知n个点有天使玩偶,有m次操作: 操作1:想起来某个位置有一个天使玩偶 操作2:询问离当前点最近的天使玩偶的曼哈顿距离 显然的CDQ问题,三维分别为时间,x轴,y轴. 但是这道题的问题在于最近距离怎么维护. 曼哈顿距离定义为|x2-x1|+|y2-y1|,所以把绝对值展开后一共有四种情况: \(x2-x1+y2-y1 => x2+y2-(x1+y1) x1-x2+y2-y1 => -x2+y2+(x1-y1) x2-x1+y1-y2 => x2-y2+(y1-x1) x1-x2+…
题目大意:初始给定平面上的一个点集.提供两种操作: 1.将一个点增加点集 2.查询距离一个点最小的曼哈顿距离 K-D树是啥...不会写... 我仅仅会CDQ分治 对于一个询问,查询的点与这个点的位置关系有四种,我们如今仅仅讨论左下角,剩余三个象限同理 设询问的点为(x,y),查询的点为(x',y') 则dis=(x-x')+(y-y')=(x+y)-(x'+y') 于是我们要找到查询的点左下方全部点中x'+y'最大的点.x值排序,y值维护树状数组就可以 用CDQ分治化在线为离线.保证x有序就可以…
题目链接:传送门 关于CDQ分治(参考李煜东<算法竞赛进阶指南>): 对于一系列操作,其中的任何一个询问操作,其结果必然等价于:初始值 + 此前所有的修改操作产生的影响. 假设共有 $m$ 次操作,对于任意的满足 $1 \le l \le r \le m$ 的正整数 $l,r$,定义 $solve(l,r)$ 为:对于任意的正整数 $k \in [l,r]$,若第 $k$ 次操作为询问操作,则计算第 $l \sim k-1$ 次操作中的修改操作对第 $k$ 次查询的影响.$solve(l,r)…
这道好(du)题(liu)还是很不错的 挺锻炼代码能力和不断优化 卡常的能力的. 对于 每次询问 我都可以将其分出方向 然后 写 也就是针对于4个方向 左下 左上 右下 右上 这样的话 就成功转换了问题 求4次 三维偏序即可 水题啊. 然后 打完代码 就提交 T飞了 //#include<bits/stdc++.h> #include<iostream> #include<iomanip> #include<ctime> #include<cstdio…
题目链接 考虑对于两个点a,b,距离为|x[a]-x[b]|+|y[a]-y[b]|,如果a在b的右上,那我们可以把绝对值去掉,即x[a]+y[a]-(x[b]+y[b]). 即我们要求满足x[b]<=x[a]且y[b]<=y[a]的最大的x[b]+y[b],用CDQ分治+树状数组解决. 那如果a不在b的右上呢?可以通过坐标变换解决(因为要求的只是相对距离). 坐标变换可以用Xmax或Ymax减去xi或yi. 如果还用之前的方法,每次变换坐标前都要把操作序列变为初始序列(时间有序),但是这样很…
原题 定义一个点比另一个点大为当且仅当这个点的三个值分别大于等于另一个点的三个值.每比一个点大就为加一等级,求每个等级的点的数量. 显然的三维偏序问题,CDQ的板子题. CDQ分治: CDQ分治是一种特殊的分治方法,在 OI 界初见于陈丹琦 2008 年的集训队作业中,因此被称为 CDQ 分治. CDQ分治是将操作分治,用于解决"修改独立,允许离线"的问题.本质为按时间分治. 可以用CDQ的题目必须满足: 1.修改与询问互相独立,且修改之间互不影响 2.允许离线 那么我们将操作序列分为…