首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
P2257 YY的GCD--洛谷luogu
】的更多相关文章
洛谷 P2257 YY的GCD
洛谷 P2257 YY的GCD \(solution:\) 这道题完全跟[POI2007]ZAP-Queries (莫比乌斯反演+整除分块) 用的一个套路. 我们可以列出答案就是要我们求: \(ans=\sum_{p\in prime}\sum_{i=1}^{n}{\sum_{j=1}^{m}{[gcd(i,j)==p]}}\) 我们发现后面那一部分(\(\sum_{i=1}^{n}{\sum_{j=1}^{m}{[gcd(i,j)==p]}}\))可以套路的莫比乌斯反演: \(ans=\sum…
[Luogu P2257] YY的GCD (莫比乌斯函数)
题面 传送门:洛咕 Solution 推到自闭,我好菜啊 显然,这题让我们求: \(\large \sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)\in prime]\) 根据套路,我们可以把判断是否为质数改为枚举这个质数,有: 为了方便枚举,我们在这里假设有\(m>n\) \(\large \sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{k\in prime}^{n}[gcd(i,j)= k]\) 显然,要让\(gcd(i,j)=k\),必须要有\…
P2257 YY的GCD
P2257 YY的GCD 题目描述 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 kAc这种傻×必然不会了,于是向你来请教…… 多组输入 输入输出格式 输入格式: 第一行一个整数T 表述数据组数 接下来T行,每行两个正整数,表示N, M 输出格式: T行,每行一个整数表示第i组数据的结果 输入输出样例 输入样例#1: 复制 2 10 10 100 100 输出样例#1: 复制 30 2791…
题解 P2257 YY的GCD
P2257 YY的GCD 解题思路 果然数论的题是真心不好搞. 第一个莫比乌斯反演的题,好好推一下式子吧..(借鉴了blog) 我们要求的答案就是\(Ans=\sum\limits_{i=1}^{n}\sum\limits _{j=1}^{m}[\gcd(x,y)=prim]\) 这算是一类题了,大概套路如下: \(f[d]\) 表示 \(\gcd(i,j)\) 所有的方案数. 即:\(f(d)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}[gcd(i,j…
P1654 OSU!-洛谷luogu
传送门 题目背景 原 <产品排序> 参见P2577 题目描述 osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: 一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串.在这个串中连续的 XX 个 11 可以贡献 X^3X3 的分数,这x个1不能被其他连续的1所包含(也就是极长的一串1,具体见样例解释) 现在给出n,以及每个操作的成功率,请你输出期望分数,输出四舍五入后保留1位小数. 输入输出格式 输入格式:…
洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块
https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}[gcd(i,j)==p] $ 由套路: \(=\sum\limits_p \sum\limits_{k=1}^{N}\mu(k) \lfloor\frac{n}{kp}\rfloor \lfloor\frac{m}{kp}…
洛谷 P2257 YY的GCD 题解
原题链接 庆祝: 数论紫题 \(T4\) 达成! 莫比乌斯 \(T1\) 达成! yy 真是个 神犇 前记 之前我觉得: 推式子,直接欧拉筛,筛出个 \(\phi\),然后乱推 \(\gcd\) 就行了. 现在我觉得: 推式子,还是欧拉筛,筛出个 \(\mu\) ,然后乱推 \(\gcd\) 就行了. 前置知识: 一定数学基础 ,欧拉筛. 至少了解单位函数.(最好会整除分块哦) 我们先引入 \(\mu\) 的概念. \[ \mu_n = \begin {cases} 1 , n=1 \\ (-1…
洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)
题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. \(1 \leq T \leq 10^4\),\(1 \leq n,m \leq 10^7\). 今天终于学会了莫比乌斯反演反演~~,就写篇博客加深下印象吧. 要说这莫比乌斯反演有多么博大精深,就不得不从莫比乌斯函数 \(\mu(x)\) 说起. 我们定义 \(\mu(x)\) 为: \[\mu(…
洛谷P2257 YY的GCD 莫比乌斯反演
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少\((x,y)\)满足\(gcd(x,y)\in \mathbb{P}\) 数据范围 \(T=10000\),\(1\leqslant N,M\leqslant 10000000\) 显然,暴力不可做. 这种公约数计数的题貌似大多都是用莫比乌斯反演做的?套路啊,套路. 首先,我们先很套路地设一个函数…
洛谷P2257 YY的GCD
今日份是数论 大概是..从小学奥数到渐渐毒瘤 那就简单列一下目录[大雾 同余 质数密度 唯一分解定理 互质 完全剩余系 简化剩余系 欧拉函数 逆元 斐蜀定理 阶(及其性质) 欧拉定理 费马小定理 原根 调和级数 欧拉函数推广到积性函数 完全积性函数 莫比乌斯函数 莫比乌斯反演 狄利克雷卷积 杜教筛 Lucas定理 回到这道题 题意: 给出n, m ∈ [1, 1e7] ,求有多少对(x, y) 满足x ∈ [1, n], y ∈ [1, m] 且 gcd(x, y) 为质数 字丑[痛心 附上代码…