什么是label smoothing? 标签平滑(Label smoothing),像L1.L2和dropout一样,是机器学习领域的一种正则化方法,通常用于分类问题,目的是防止模型在训练时过于自信地预测标签,改善泛化能力差的问题. 为什么需要label smoothing? 对于分类问题,我们通常认为训练数据中标签向量的目标类别概率应为1,非目标类别概率应为0.传统的one-hot编码的标签向量\(y_i\)为, \[y_i=\begin{cases}1,\quad i=target\\ 0,…