【BZOJ1041】圆上的整点(数论)】的更多相关文章

题目描述 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 输入 只有一个正整数n,n<=2000 000 000 输出 整点个数 样例输入 4 样例输出 4 题解 数论 #include <cmath> #include <cstdio> typedef long long ll; ll judge(ll k) { ll t = (ll)sqrt(k); return t * t == k ? t : 0; } ll gcd(ll a , ll b…
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Sample Input 4 Sample Output 4 Solution 一个有趣的视频 Code #include<iostream> #include<cstring> #include<cstdio> #include<cmath> #define LL l…
题目传送门 题目大意:求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 思路:没思路,看大佬的博客(转载自https://blog.csdn.net/csyzcyj),转载只为记录,详细的证明,大佬的博客已经写得很清楚了,不再赘述,数论题就是这样开心又头秃 #include<bits/stdc++.h> #define CLR(a,b) memset(a,b,sizeof(a)) using namespace std; typedef long long ll; ;…
嗯... 自己看视频讲解? >Click Here< #include<cstdio> #include<queue> #include<iostream> #include<cstring> #define int long long using namespace std; inline int read(){ ,f=;char chr=getchar(); ;chr=getchar();} )+(ans<<)+chr-;chr=…
[BZOJ1041]圆上的整点(数论) 题面 BZOJ 洛谷 题解 好神仙的题目啊. 安利一个视频,大概是第\(7\)到\(19\)分钟的样子 因为要质因数分解,所以复习了一下\(Pollard\_rho\) #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<algorithm> #inclu…
[BZOJ1041][HAOI2008]圆上的整点 题面 bzoj 洛谷 题解 不妨设\(x>0,y>0\) \[ x^2+y^2=r^2\\ y^2=(x+r)(x-r) \] 设\(r-x=ud,r+x=vd,(u,v)=1\) \[ y^2=d^2uv \] \(u,v\)一定为完全平方数 则\(u=s^2,v=t^2\)且必有\((s,t)=1\) \[ 2r=(u+v)d=(s^2+t^2)d\\ \Rightarrow\\ x=\frac{t^2-s^2}{2}d\\ y=dst\…
2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ \(\pi\) ) https://www.luogu.com.cn/problem/P2508 题意: 求一个给定的圆 \((x^2+y^2=R^2)\) ,在圆周上有多少个点的坐标是整数. 分析: 第一步,咱把圆以横竖坐标轴为分界线分成四份儿,算出一份的整点坐标数*4就是结果. 恭喜你,40分到手. 第二步,先画一个 \(R=5\) 的圆,只关注第一象限,这里有四个整点坐标,分别为 \((0,5)\) , \((3,4…
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4210  Solved: 1908[Submit][Status][Discuss] Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Sample Input 4 Sample Output 4 HINT 科普视频 So…
http://www.lydsy.com/JudgeOnline/problem.php?id=1041 设 X>0 ,Y>0 X^2 + Y^2 = R^2 X^2 = R^2-Y^2 = (R+Y)(R-Y) 令  d=gcd(R+Y,R-Y),A=(R+Y)/d,B=(R-Y)/d 则 gcd(A,B)=1,且A != B X^2= d^2 *A * B 所以 A * B 为 完全平方数 又因为 gcd(A,B)=1 ,A!=B,所以 A,B 都是 完全平方数 令 a= 根号A,b=根号…
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 4631  Solved: 2087 [Submit][Status][Discuss] Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Sample Input 4 Sample Output 4 最容易想到的就是直接…