PLSA-概率潜语义分析(二)】的更多相关文章

一.pLSA模型 1.朴素贝叶斯的分析 (1)可以胜任许多文本分类问题.(2)无法解决语料中一词多义和多词一义的问题--它更像是词法分析,而非语义分析.(3)如果使用词向量作为文档的特征,一词多义和多词一义会造成计算文档间相似度的不准确性.(4)可以通过增加"主题"的方式,一定程度的解决上述问题:一个词可能被映射到多个主题中(一词多义),多个词可能被映射到某个主题的概率很高(多词一义) 2.pLSA模型 基于概率统计的pLSA模型(probabilistic latentsemanti…
LSA(Latent semantic analysis,隐性语义分析).pLSA(Probabilistic latent semantic analysis,概率隐性语义分析)和 LDA(Latent Dirichlet allocation,隐狄利克雷分配)这三种模型都可以归类到话题模型(Topic model,或称为主题模型)中.相对于比较简单的向量空间模型,主题模型通过引入主题这个概念,更进一步地对文本进行语义层面上的理解. LSA 模型就是对词-文档共现矩阵进行SVD,从而得到词和文…
Latent Semantic Analysis (LSA) Tutorial 译:http://www.puffinwarellc.com/index.php/news-and-articles/articles/33.html WangBen 2011-09-16 beijing http://blog.csdn.net/yihucha166/article/details/6783212 潜语义分析LSA介绍 Latent Semantic Analysis (LSA), also kno…
LSI(Latent semantic indexing, 潜语义索引)和LSA(Latent semantic analysis,潜语义分析)这两个名字其实是一回事.我们这里称为LSA. LSA源自问题:如何从搜索query中找到相关的文档?当我们试图通过比较词来找到相关的文本时,就很机械.存在一定的局限性.在搜索中,文档的相似性并不应该由两个文本包含的词直接决定,而是应该去比较隐藏在词之后的意义和概念.但传统向量空间模型使用精确的词匹配,即精确匹配用户输入的词与向量空间中存在的词.比如用户搜…
原文链接:http://www.cnblogs.com/appler/archive/2012/02/02/2335886.html 原始英文链接:http://www.puffinwarellc.com/index.php/news-and-articles/articles/33.html 潜语义分析LSA介绍 Latent Semantic Analysis (LSA), also known as Latent Semantic Indexing (LSI) literally mean…
PLSA最大化下面函数: 简化后,最大化下面函数: . -------------------------------------------------------------------------- 我们用期望最大值化算法(EM),求上述式子的最大值, 初始化: , E步:计算 . (固定.,). M步:求下述最大化问题 . 用Lagrange乘子求最大化问题: , --------------------------------------------------------------…
上一篇总结了潜在语义分析(Latent Semantic Analysis, LSA),LSA主要使用了线性代数中奇异值分解的方法,但是并没有严格的概率推导,由于文本文档的维度往往很高,如果在主题聚类中单纯的使用奇异值分解计算复杂度会很高,使用概率推导可以使用一些优化迭代算法来求解. Thomas Hofmann 于1998年根据似然原理定义了生成模型并由此提出了概率潜在语义分析模型(Probabilistic Latent Semantic Analysis),简称PLSA. PLSA属于概率…
  -----pLSA概率潜在语义分析.LDA潜在狄瑞雷克模型 一.pLSA(概率潜在语义分析) pLSA:    -------有过拟合问题,就是求D, Z, W pLSA由LSA发展过来,而早期LSA的实现主要是通过SVD分解.pLSA的模型图如下: 公式中的意义如下: 具体可以参考2010龙星计划:机器学习中对应的主题模型那一讲 *********************************************************************************…
LDA模型算法简介: 算法 的输入是一个文档的集合D={d1, d2, d3, ... , dn},同时还需要聚类的类别数量m:然后会算法会将每一篇文档 di 在 所有Topic上的一个概率值p:这样每篇文档都会得到一个概率的集合di=(dp1,dp2,..., dpm):同样的文档中的所有词也会求出 它对应每个Topic的概率,wi = (wp1,wp2,wp3,...,wpm):这样就得到了两个矩阵,一个文档到Topic,一个词到Topic. 这样LDA算法,就将文档和词,投射到了一组Top…
Machine Learning读书会,面试&算法讲座,算法公开课,创业活动,算法班集锦 近期活动: 2014年9月3日,第8次西安面试&算法讲座视频 + PPT 的下载地址:http://blog.csdn.net/v_july_v/article/details/7237351#t40: 2014年10月18日,北京10月机器学习班开班,全部PPT 的下载地址见:http://blog.csdn.net/v_july_v/article/details/7237351#t63: 201…