What is the difference between flatten and ravel functions in numpy? 两者的功能是一致的,将多维数组降为一维,但是两者的区别是返回拷贝还是返回视图,np.flatten(0返回一份拷贝,对拷贝所做修改不会影响原始矩阵,而np.ravel()返回的是视图,修改时会影响原始矩阵 import numpy as np a = np.array([[1 , 2] , [3 , 4]]) b = a.flatten() print('b:…
array 和 asarray 都可以将 结构数据 转化为 ndarray,但是主要区别就是当数据源是ndarray时,array仍然会copy出一个副本,占用新的内存,但asarray不会. 1.输入为列表时 import numpy as np a=[[1,2,3],[4,5,6],[7,8,9]] b=np.array(a) c=np.asarray(a) a[2]=1 print(a) print(b) print(c) """ 运行结果: [[1, 2, 3], […
转自:https://blog.csdn.net/lanchunhui/article/details/52700895…
np.max(a, axis=None, out=None, keepdims=False) # 接收一个参数a # 取a 在 axis方向上的最大值 np.maximum(x, y) # 接收两个参数x,y # x,y逐位比较取最大值…
刚开始接触 bs4 的时候,我也很迷茫,觉得 string 属性和 text 属性是一样的,不明白为什么要分成两个属性. html = '<p>hello world</p>' soup = BeautifulSoup(html, 'lxml') p = soup.p print(p.string) # hello word print(p.text) # hello word 输出的结果是一样的.但实际上,string 属性的返回类型是 bs4.element.Navigable…
这里需要说明一下: python3中,类定义默认继承object,所以写不写没有区别 但在python2中,并不是这样 所以此内容是针对python2的,当然python3默认继承,不代表我们就傻乎乎的让程序自动继承,自己却不知道其底层区别,所以了解此内容还是很有必要的! 测试代码如下: # -.- coding:utf-8 -.- # __author__ = 'zhengtong' class Person: """ 不带object """…
一.概念介绍 在介绍目录directory与包package的区别之前,先理解一个概念---模块 模块的定义:本质就是以.py结尾的python文件,模块的目的是为了其他程序进行引用. 目录(Dictionary): Dictionary在pycharm中就是一个文件夹,放置资源文件,对应于在进行JavaWeb开发时用于放置css/js文件的目录,或者说在进行物体识别时,用来存储背景图像的文件夹.该文件夹其中并不包含_ _ init.py_ _文件 包(Package): 对于Python pa…
Numpy matrices必须是2维的,但是 numpy arrays (ndarrays) 可以是多维的(1D,2D,3D····ND). Matrix是Array的一个小的分支,包含于Array.所以matrix 拥有array的所有特性. 在numpy中matrix的主要优势是:相对简单的乘法运算符号.例如,a和b是两个matrices,那么a*b,就是矩阵积.而不用np.dot().如: import numpy as np a=np.mat('4 3; 2 1') b=np.mat(…
Numpy 精通面向数组编程和思维方式是成为Python科学计算大牛的一大关键步骤.——<利用Python进行数据分析> Numpy(Numerical Python)是Python科学计算的基础包.具有以下功能: 快速高效的多维数组对象ndarray ndarray表示的是N维数组对象. ndarray是一个通用的同构数据多维容器,也就是说,其中的元素必须都是相同类型的.每个数组里面都有一个shape和一个dtype shape表示各个维度大小的元组dtype表示数组数据类型 除非是显示的设…
 在python&numpy中切片(slice) 上文说到了,词频的统计在数据挖掘中使用的频率很高,而切片的操作同样是如此.在从文本文件或数据库中读取数据后,需要对数据进行预处理的操作.此时就需要对数据进行变换,切片,来生成自己需要的数据形式. 对于一维数组来说,python原生的list和numpy的array的切片操作都是相同的.无非是记住一个规则arr_name[start: end: step],就可以了. 实例: 下面是几个特殊的例子: [:]表示复制源列表 负的index表示,从后往…