【Coursera】高斯混合模型】的更多相关文章

一.高斯混合模型 软分类算法,即对每一个样本,计算其属于各个分布的概率,概率值最大的就是这个样本所属的分类. 对于训练样本的分布,看成为多个高斯分布加权得到的.其中每个高斯分布即为某一特定的类. 高斯混合模型和高斯判别分析非常像,唯一的区别就是在高斯混合模型中,每个样本所属的类别标签是未知的. 为了计算每个样本属于各个分布的概率Z,对每个高斯分布的参数进行初始化,然后以此计算概率Z,再根据Z来对所有参数进行优化,直到收敛. 二.EM算法 1.Jensen不等式 若二阶导数的不等号方向逆转(f(x…
复习: 1.概率密度函数,密度函数,概率分布函数和累计分布函数 概率密度函数一般以大写“PDF”(Probability Density Function),也称概率分布函数,有的时候又简称概率分布函数. 而累计分布函数是概率分布函数的积分. 注意区分 从数学上看,累计分布函数F(x)=P(X<x),表示随机变量X的值小于x的概率.这个意义很容易理解. 概率密度f(x)是F(x)在x处的关于x的一阶导数,即变化率.如果在某一x附近取非常小的一个邻域Δx,那么,随机变量X落在(x, x+Δx)内的…
对于高斯混合模型是干什么的呢?它解决什么样的问题呢?它常用在非监督学习中,意思就是我们的训练样本集合只有数据,没有标签. 它用来解决这样的问题:我们有一堆的训练样本,这些样本可以一共分为K类,用z(i)表示.,但是具体样本属于哪类我们并不知道,现在我们需要建立一个模型来描述这个训练样本的分布.这时, 我们就可以用高斯混合模型来进行描述. 怎么入手呢? 高斯混合模型: 我们这么想,因为样本集合潜在地是可以分为K类的,用z(i)表示第 i 样本所属的类别,所以z(i) 的范围为从1至 K.对于我们可…
高斯混合模型(GMM)参数优化及实现 (< xmlnamespace prefix ="st1" ns ="urn:schemas-microsoft-com:office:smarttags" />2010-11-13) 1 高斯混合模型概述< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" /> 高斯密度函…
EM算法有很多的应用: 最广泛的就是GMM混合高斯模型.聚类.HMM等等. The EM Algorithm 高斯混合模型(Mixtures of Gaussians)和EM算法 EM算法 求最大似然函数估计值的一般步骤: (1)写出似然函数: (2)对似然函数取对数,并整理: (3)求导数,令导数为0,得到似然方程: (4)解似然方程,得到的参数即为所求. 期望最大化算法(EM算法): 优点: 1. 简单稳定: 2. 通过E步骤和M步骤使得期望最大化,是自收敛的分类算法,既不需要事先设定类别也…
# coding:utf-8 import numpy as np def qq(y,alpha,mu,sigma,K,gama):#计算Q函数 gsum=[] n=len(y) for k in range(K): gsum.append(np.sum([gama[j,k] for j in range(n)])) return np.sum([g*np.log(ak) for g,ak in zip(gsum,alpha)])+\ np.sum([[np.sum(gama[j,k]*(np.…
提出混合模型主要是为了能更好地近似一些较复杂的样本分布,通过不断添加component个数,能够随意地逼近不论什么连续的概率分布.所以我们觉得不论什么样本分布都能够用混合模型来建模.由于高斯函数具有一些非常有用的性质.所以高斯混合模型被广泛地使用. GMM与kmeans相似,也是属于clustering,不同的是.kmeans是把每一个样本点聚到当中一个cluster,而GMM是给出这些样本点到每一个cluster的概率.每一个component就是一个聚类中心. GMM(Gaussian Mi…
注:本文是对<统计学习方法>EM算法的一个简单总结. 1. 什么是EM算法? 引用书上的话: 概率模型有时既含有观测变量,又含有隐变量或者潜在变量.如果概率模型的变量都是观测变量,可以直接使用极大似然估计法或者贝叶斯的方法进行估计模型参数,但是当模型含有隐藏变量时,就不能简单使用这些方法了.EM算法就是含有隐变量的概率模型参数的极大似然估计法,或者极大似然后验概率估计法. 2. EM 算法的一个小例子:三硬币模型 假设有3枚硬币,记作A,B,C.这些硬币的正面出现的概率分别为\(\pi\).\…
最近学习基础算法<统计学习方法>,看到利用EM算法估计高斯混合模型(GMM)的时候,发现利用贝叶斯的来理解高斯混合模型的应用其实非常合适. 首先,假设对于贝叶斯比较熟悉,对高斯分布也熟悉.本文将GMM用于聚类来举例. 除了简单的高斯分布,理论上通过组合多个不同的高斯分布可以构成任意复杂的分布函数.如下图所示: 在最大似然,贝叶斯方法与朴素贝叶斯分类中,2.1中提到高斯概率密度用来计算连续变量情况下的朴素贝叶斯概率.该情况下的高斯分布是训练已知,然后对于输入变量求取其概率密度,结合类别的先验概率…
http://www.zhihuishi.com/source/2073.html 高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型. 对图像背景建立高斯模型的原理及过程:图像灰度直方图反映的是图像中某个灰度值出现的频次,也可以以为是图像灰度概率密度的估计.如果图像所包含的目标区域和背景区域相差比较大,且背景区域和目标区域在灰度上有一定的差异,那么该图像的灰度直方图呈现双峰-谷形状,其中一个峰对应于目标,另一个峰对…