Tensorflow细节-P54-变量】的更多相关文章

1.TensorFlow中的变量和常量介绍 TensorFlow中的变量: import tensorflow as tf state = tf.Variable(0,name='counter') 以上代码定义了一个state变量, new_value = tf.add(state,1) 以上代码创建一个操作,使定义的变量加一,并将加一后的值赋给 new_value update = tf.assign(state,new_value) 赋值操作,将new_value 的值赋给state in…
2.Tensorflow中的变量注意:tf中使用 变量必须先初始化下面是一个使用变量的TF代码(含注释): # __author__ = "WSX" import tensorflow as tf # tf中使用 变量必须先初始化 x = tf.Variable([1,2]) a = tf.constant([3,3]) sub = tf.subtract(x,a) add = tf.add(x,sub) init = tf.global_variables_initializer()…
''' Created on Apr 21, 2017 @author: P0079482 ''' #如何通过tf.variable_scope函数来控制tf.ger_variable函数获取已经创建过的变量 #在名字为foo的命名空间内创建名字为v的变量 import tensorflow as tf with tf.variable_scope("foo"): v = tf.get_variable("v",shape=[1],initializer=tf.co…
[源码解析] TensorFlow 之 分布式变量 目录 [源码解析] TensorFlow 之 分布式变量 1. MirroredVariable 1.1 定义 1.2 相关类 1.2.1 类体系 1.2.2 DistributedValues 定义 使用 1.2.3 DistributedDelegate 1.2.4 PerReplica 1.2.5 Mirrored 1.2.6 Policy VariablePolicy OnReadPolicy OnWritePolicy values_…
import tensorflow as tf# 熟悉tensorflow的变量定义和运行方式v1 = tf.Variable(2) #定义变量并给变量赋值v2 = tf.Variable(48) c1 = tf.constant(16) #定义常量并赋值c2 = tf.constant(3)addv = v1 + v2 sess = tf.Session() #注意tensorflow在运行时需要创建一个session, 所有的运算需要在session中执行 tf.initialize_all…
1.tf.Variable([[1, 2]])  # 创建一个变量 参数说明:[[1, 2]] 表示输入的数据,为一行二列的数据 2.tf.global_variables_initializer() 进行变量全局的初始化操作 参数说明:如果代码中存在变量,那么一定需要进行初始化操作 3.tf.matmul(w, x) # 进行数据的点乘操作 参数说明:w,x表示需要进行点乘的矩阵 4.sess = tf.Session() 执行操作的函数 参数说明:通常使用sess.run() 进行参数的执行…
从初识tf开始,变量这个名词就一直都很重要,因为深度模型往往所要获得的就是通过参数和函数对某一或某些具体事物的抽象表达.而那些未知的数据需要通过学习而获得,在学习的过程中它们不断变化着,最终收敛达到较好的表达能力,因此它们无疑是变量. 正如三位大牛所言:深度学习是一种多层表示学习方法,用简单的非线性模块构建而成,这些模块将上一层表示转化成更高层.更抽象的表示. 原文如下: Deep-learning methods are representation-learning methods with…
What: 在Tensorflow中, 为了区别不同的变量(例如TensorBoard显示中), 会需要命名空间对不同的变量进行命名. 其中常用的两个函数为: tf.variable_scope, tf.name_scope. Why: 在自己的编写代码过程中, 用如下代码进行变量生成并进行卷积操作: import tensorflow as tf import numpy as np def my_conv2d(data, name, kh, kw, sh, sw, n_out): n_in…
跟着网易云课堂上面的免费公开课深度学习应用开发Tensorflow实践学习,学到线性回归这里感觉有很多需要总结,梳理记录下阶段性学习内容. 题目:通过生成人工数据集合,基于TensorFlow实现y=2*x+1线性回归 使用Tensorflow进行算法设计与训练的核心步骤 (1)准备数据 (2)构建模型 (3)训练模型 (4)进行预测 #线性回归问题 #******************一.准备数据:********************** #生成人工数据集 # 在Jupter中,使用ma…
首先进行数据预处理,需要生成.tsv..jpg文件 import matplotlib.pyplot as plt import numpy as np import os from tensorflow.examples.tutorials.mnist import input_data LOG_DIR = 'log' SPRITE_FILE = 'mnist_sprite.jpg' META_FIEL = "mnist_meta.tsv" # 存储索引和标签 def create_…