python数据分析1】的更多相关文章

这是本人一直比较好奇的问题,网上没搜到,最近在看python数据分析,正好自己动手做一下试试.作者对于python是零基础,需要从头学起. 在写本文时,作者也没有完成这个小分析目标,边学边做吧. ================================================================ Python基础: 中国大学Mooc,南京大学,张莉老师 -<用Python玩转数据> 了解基本的语法和常用函数就行了,其他的用的时候再搜. 财经数据源: TuShare…
基于上两篇文章的工作 [Python数据分析]Python3操作Excel-以豆瓣图书Top250为例 [Python数据分析]Python3操作Excel(二) 一些问题的解决与优化 已经正确地实现豆瓣图书Top250的抓取工作,并存入excel中,但是很不幸,由于采用的串行爬取方式,每次爬完250页都需要花费7到8分钟,显然让人受不了,所以必须在效率上有所提升才行. 仔细想想就可以发现,其实爬10页(每页25本),这10页爬的先后关系是无所谓的,因为写入的时候没有依赖关系,各写各的,所以用串…
继上一篇[Python数据分析]Python3操作Excel-以豆瓣图书Top250为例 对豆瓣图书Top250进行爬取以后,鉴于还有一些问题没有解决,所以进行了进一步的交流讨论,这期间得到了一只尼玛的帮助与启发,十分感谢! 上次存在的问题如下: 1.写入不能继续的问题 2.在Python IDLE中明明输出正确的结果,写到excel中就乱码了. 上述两个问题促使我改换excel处理模块,因为据说xlwt只支持到Excel 2003,很有可能会出问题. 虽然“一只尼玛”给了一个Validate函…
最近在看<Python数据分析>这本书,而自己写代码一直用的是Pycharm,在练习的时候就碰到了plot()绘图不能显示出来的问题.网上翻了一下找到知乎上一篇回答,试了一下好像不行,而且答住提供的“from pylab import *”的方法也不太符合编程规范,最后在Stackoverflow找到了想要的答案,特在此分析一下给大家: 以下是有问题的代码,不能绘图成功: import pandas as pd from numpy import * import matplotlib.pyp…
Python 数据分析(二) 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识 第1节 groupby 技术 第2节 数据聚合 第3节 分组级运算和转换 第4节 透视表和交叉表 第5节 时间序列 第6节 日期的规范.频率以及移动 第7节 时区处理 第8节 时期及算术运算 第9节 重采样及频率转换 第10节 时间序列绘图 groupby 技术 一.实验简介 Python 数据分析(二)需要同学们先行学完 Python 数据分析(一)的课程. 对数据集进行分…
In [1]: import numpy numpy.__version__ Out[1]: '1.13.1' In [2]: import numpy as np  …
numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性.   昨天晚上发了第一部分:地址是:http://www.cnblogs.com/cgzl/p/7630065.html 我一共准备了numpy技巧4篇文章,这是第二部分,剩余两部分会在10.1假期内完成. 下面就是numpy技巧的第二部分:由于直接再这里添加jupyter notebook源码的话变形比较厉害,所以还是…
numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性.   昨天晚上发了第一部分:地址是:http://www.cnblogs.com/cgzl/p/7630065.html 我一共准备了numpy技巧4篇文章,这是第三部分,剩余一部分会在10.1假期内完成. 下面就是numpy技巧的第三部分:由于直接再这里添加jupyter notebook源码的话变形比较厉害,所以还是…
numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性.   第一部分: http://www.cnblogs.com/cgzl/p/7630065.html 第二部分: http://www.cnblogs.com/cgzl/p/7630972.html 第三部分: http://www.cnblogs.com/cgzl/p/7631471.html 这是最后一部分:由于直…
[读书笔记与思考]<python数据分析与挖掘实战>-张良均 最近看一些机器学习相关书籍,主要是为了拓宽视野.在阅读这本书前最吸引我的地方是实战篇,我通读全书后给我印象最深的还是实战篇.基础篇我也看了,但发现有不少理论还是讲得不够透彻,个人还是比较倾向于 <Machine Learning>--Tom M.Mitchell,Andrew 的 machine learning 课程,或周华志的<机器学习>,Jiawei Han 的 <data mining>.…