数据归一化Feature Scaling】的更多相关文章

数据归一化Feature Scaling 当我们有如上样本时,若采用常规算欧拉距离的方法sqrt((5-1)2+(200-100)2), 样本间的距离被‘发现时间’所主导.尽管5是1的5倍,200只是100的2倍.这是由于量纲不同,导致数据不在同一个度量级上. 因此我们需要进行一些数据归一化的处理,将所有的数据映射到同一尺度. 最值归一化:把所有数据映射到0-1之间. 适用于分布有明显边界的情况,缺点是受outlier影响较大.如收入的分布,大多数人是一万,而少部分人月收入是100万. 解决方法…
线性回归是一种回归分析技术,回归分析本质上就是一个函数估计的问题(函数估计包括参数估计和非参数估计),就是找出因变量和自变量之间的因果关系.回归分析的因变量是应该是连续变量,若因变量为离散变量,则问题转化为分类问题,回归分析是一个有监督学习问题. 线性其实就是一系列一次特征的线性组合,在二维空间中是一条直线,在三维空间中是一个平面,然后推广到n维空间,可以理解维广义线性吧. 例如对房屋的价格预测,首先提取特征,特征的选取会影响模型的精度,比如房屋的高度与房屋的面积,毫无疑问面积是影响房价的重要因…
线性回归是一种回归分析技术,回归分析本质上就是一个函数估计的问题(函数估计包括参数估计和非参数估计),就是找出因变量和自变量之间的因果关系.回归分析的因变量是应该是连续变量,若因变量为离散变量,则问题转化为分类问题,回归分析是一个有监督学习问题. 线性其实就是一系列一次特征的线性组合,在二维空间中是一条直线,在三维空间中是一个平面,然后推广到n维空间,可以理解维广义线性吧. 例如对房屋的价格预测,首先提取特征,特征的选取会影响模型的精度,比如房屋的高度与房屋的面积,毫无疑问面积是影响房价的重要因…
//2019.08.03下午#机器学习算法的数据归一化(feature scaling)1.数据归一化的必要性:对于机器学习算法的基础训练数据,由于数据类型的不同,其单位及其量纲也是不一样的,而也正是因为如此,有时它会使得训练集中每个样本的不同列数据大小差异较大,即数量级相差比较大,这会导致在机器学习算法中不同列数据的权重很大的差异,数量级大的数据所体现出来的影响会远远大于数量级小的数据(比如样本中不同列数据对k-近邻算法中欧拉距离大小的影响会因为数据的数量级而存在很大差异).基于以上的问题,我…
No.1. 数据归一化的目的 数据归一化的目的,就是将数据的所有特征都映射到同一尺度上,这样可以避免由于量纲的不同使数据的某些特征形成主导作用.   No.2. 数据归一化的方法 数据归一化的方法主要有两种:最值归一化和均值方差归一化.   最值归一化的计算公式如下: 最值归一化的特点是,可以将所有数据都映射到0-1之间,它适用于数据分布有明显边界的情况,容易受到异常值(outlier)的影响,异常值会造成数据的整体偏斜.   均值方差归一化的计算公式如下: 均值方差归一化的特点是,可以将数据归…
Feature Scaling 可以翻译为特征归一化,或者数据归一化,比如统计学习中,我们一般都会对不同量纲的特征做归一化,深度学习中经常会谈到增加的BN层,LRN层会带来训练收敛速度的提升,等等.问题是,我们为什么需要做Feature Scaling呢?可以不做吗?做Feature Scaling背后的数学意义是什么? 首先,我们来看看下面一个简单的神经元 如果x1的输入值范围在(0,10), 而x2的值输入值范围在(1000, 10000),在模型训练(一般选择梯度下降法)时,需要迭代更新可…
参考:https://blog.csdn.net/iterate7/article/details/78881562 在运用一些机器学习算法的时候不可避免地要对数据进行特征缩放(feature scaling),比如:在随机梯度下降(stochastic gradient descent)算法中,特征缩放有时能提高算法的收敛速度. 什么是特征缩放 特征缩放的目标就是数据规范化,使得特征的范围具有可比性.它是数据处理的预处理处理,对后面的使用数据具有关键作用. 机器算法为什么要特征缩放 特征缩放还…
数据归一化(Feature Scaling) 一.为什么要进行数据归一化 原则:样本的所有特征,在特征空间中,对样本的距离产生的影响是同级的: 问题:特征数字化后,由于取值大小不同,造成特征空间中样本点的距离会被个别特征值所主导,而受其它特征的影响比较小: 例:特征1 = [1, 3, 2, 6, 5, 7, 9],特征2 = [1000, 3000, 5000, 2000, 4000, 8000, 3000],计算两个样本在特征空间的距离时,主要被特征2所决定: 定义:将所有的数据(具体操作时…
定义:Feature scaling is a method used to standardize the range of independent variables or features of data. In data processing, it is also known as data normalization and is generally performed during the data preprocessing step.(来源于wikipedia) 简单来说,它主…
浅谈Feature Scaling 定义:Feature scaling is a method used to standardize the range of independent variables or features of data. In data processing, it is also known as data normalization and is generally performed during the data preprocessing step.(来源于…