机器学习——Day 3 多元线性回归】的更多相关文章

写在开头 由于某些原因开始了机器学习,为了更好的理解和深入的思考(记录)所以开始写博客. 学习教程来源于github的Avik-Jain的100-Days-Of-MLCode 英文版:https://github.com/Avik-Jain/100-Days-Of-ML-Code 中文翻译版:https://github.com/MLEveryday/100-Days-Of-ML-Code 本人新手一枚,所以学习的时候遇到不懂的会经常百度,查看别人的博客现有的资料.但是由于不同的人思维和写作风格…
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补充>的是我自己加的内容而非课堂内容,参考文献列于文末.博主能力有限,若有错误,恳请指正: #---------------------------------------------------------------------------------# 多元线性回归的模型: #-----------…
1. 多元线性回归定义 多元线性回归也被称为多元线性回归. 我们现在介绍方程的符号,我们可以有任意数量的输入变量. 这些多个特征的假设函数的多变量形式如下: hθ(x)=θ0+θ1x1+θ2x2+θ3x3+⋯+θnxn 为了开发这个功能,我们可以想一想,θ0作为房子的基本价格,θ1每平方米的价格,θ2每层楼的价格,等X1将在房子的平方米数,x2楼层数,等等. 利用矩阵乘法的定义,我们的多变量假设函数可以简洁地表示为: 这是对一个训练例子的假设函数的矢量化. 备注:为了方便的原因,在这个过程中我们…
一.前述 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程.TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统. 二.相关概念和安装 TensorFlow中的计算可以表示为一个有向图(DirectedGraph)或者称计算图(ComputationGraph)其中每一…
前情回顾 [第二天100天搞定机器学习|Day2简单线性回归分析][1],我们学习了简单线性回归分析,这个模型非常简单,很容易理解.实现方式是sklearn中的LinearRegression,我们也学习了LinearRegression的四个参数,fit_intercept.normalize.copy_X.n_jobs.然后介绍了LinearRegression的几个用法,fit(X,y).predict(X).score(X,y).最后学习了matplotlib.pyplot将训练集结果和…
1. 内容概要 Multivariate Linear Regression(多元线性回归) 多元特征 多元变量的梯度下降 特征缩放 Computing Parameters Analytically 正规公式(Normal Equation ) 正规公式非可逆性(Normal Equation Noninvertibility) 2. 重点&难点 1)多元变量的梯度下降 2) 特征缩放 为什么要特征缩放 首先要清楚为什么使用特征缩放.见下面的例子 特征缩放前 由图可以知道特征缩放前,表示面积的…
相比于week1中讨论的单变量的线性回归,多元线性回归更具有一般性,应用范围也更大,更贴近实际. Multiple Features 上面就是接上次的例子,将房价预测问题进行扩充,添加多个特征(features),使问题变成多元线性回归问题. 多元线性回归将通过更多的输入特征,来预测输出.上面有新的Notation(标记)需要掌握. 相比于之前的假设: 我们将多元线性回归的假设修改为: 每一个xi代表一个特征:为了表达方便,令x0=1,可以得到假设的矩阵形式: 其中,x和theta分别表示: 所…
http://www.cnblogs.com/wzm-xu/p/4062266.html 多元线性回归----Java简单实现   学习Andrew N.g的机器学习课程之后的简单实现. 课程地址:https://class.coursera.org/ml-007 不大会编辑公式,所以略去具体的推导,有疑惑的同学去看看Andrew 的课程吧,顺带一句,Andrew的课程实在是很赞. 如果还有疑问,feel free to contact me via emails or QQ. LinearRe…
整理自Andrew Ng的machine learning课程 week2. 目录: 多元线性回归 Multivariates linear regression /MLR Gradient descent for MLR Feature Scaling and Mean Normalization Ensure gradient descent work correctly Features and polynomial regression Normal Equation Vectoriza…
R中的线性回归函数比较简单,就是lm(),比较复杂的是对线性模型的诊断和调整.这里结合Statistical Learning和杜克大学的Data Analysis and Statistical Inference的章节以及<R语言实战>的OLS(Ordinary Least Square)回归模型章节来总结一下,诊断多元线性回归模型的操作分析步骤.   1.选择预测变量   因变量比较容易确定,多元回归模型中难在自变量的选择.自变量选择主要可分为向前选择(逐次加使RSS最小的自变量),向后…