Introduction Neural NetWork的由来 时,我们可以对它进行处理,分类.但是当特征数增长为时,分类器的效率就会很低了. Neural NetWork模型 该图是最简单的神经网络,共有3层,输入层Layer1:隐藏层Layer2:输出层Layer3,每层都有多个激励函数ai(j).通过层与层之间的传递参数Θ得到最终的假设函数hΘ(x).我们的目的是通过大量的输入样本x(作为第一层),训练层与层之间的传递参数(经常称为权重),使得假设函数尽可能的与实际输出值接近h(x)≍y(代…
Exercise 1:Linear Regression---实现一个线性回归 关于如何实现一个线性回归,请参考:http://www.cnblogs.com/hapjin/p/6079012.html Exercise 2:Logistic Regression---实现一个逻辑回归 问题描述:用逻辑回归根据学生的考试成绩来判断该学生是否可以入学. 这里的训练数据(training instance)是学生的两次考试成绩,以及TA是否能够入学的决定(y=0表示成绩不合格,不予录取:y=1表示录…
Exercise 1:Linear Regression---实现一个线性回归 重要公式 1.h(θ)函数 2.J(θ)函数 思考一下,在matlab里面怎么表达?如下: 原理如下:(如果你懂了这道作业题,上面的也就懂了) 下面通过图形方式感受一下代价函数 : 3.θ迭代过程(梯度下降) First way:批梯度下降:(编程作业使用这个公式,sum转换同理J(θ)) Second way:随机梯度下降: 好比我们下山,每次在一点环顾四周,往最陡峭的路向下走,用图形的方式更形象的表示 : 4.θ…
Exercise 1:Linear Regression---实现一个线性回归 在本次练习中,需要实现一个单变量的线性回归.假设有一组历史数据<城市人口,开店利润>,现需要预测在哪个城市中开店利润比较好? 历史数据如下:第一列表示城市人口数,单位为万人:第二列表示利润,单位为10,000$ 5.5277 9.1302 8.5186 13.6620 7.0032 11.8540 ..... ...... 用Matlab画出的图形如下:首先加载数据,将data中的第一列数据保存到X中,将data中…
Lecture 15 Anomaly Detection 异常检测 15.1 异常检测问题的动机 Problem Motivation 异常检测(Anomaly detection)问题是机器学习算法的一个常见应用.这种算法虽然主要用于无监督学习问题,但从某些角度看,它又类似于一些监督学习问题.举例: 当飞机引擎从生产线上流出时需要进行QA(质量控制测试),数据集包含引擎的一些特征变量,比如运转时产生的热量,或者振动等.当有一个新的飞机引擎从生产线上流出,它具有特征变量 xtest .异常检测问…
目录 1.1 欢迎1.2 机器学习是什么 1.2.1 机器学习定义 1.2.2 机器学习算法 - Supervised learning 监督学习 - Unsupervised learning  无监督学习 - Reinforcement learning 强化学习 - Recommender systems 推荐系统 1.2.3 课程目的 如何在构建机器学习系统时,选择最好的实践类型决策.节省时间. 1.3 监督学习 1.3.1 Regression 回归问题 1.3.2 Classific…
Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型, 通常通过增加数据集的规模,可以获得更好的结果. 但是如果数据集特别大,则首先应该检查这么大规模是否真的必要,也许只用 1000个训练集也能获得较好的效果,可以绘制学习曲线来帮助判断. 17.2 随机梯度下降法 Stochastic Gradient Descent 如果必须使用一个大规模的训练集…
Lecture 16 Recommender Systems 推荐系统 16.1 问题形式化 Problem Formulation 在机器学习领域,对于一些问题存在一些算法, 能试图自动地替你学习到一组优良的特征.通过推荐系统(recommender systems),将领略一小部分特征学习的思想. 假使有 5 部电影,3部爱情片.2部动作片.  4 个用户为其中的部分电影打了分.现在希望构建一个算法,预测每个人可能给没看过的电影打多少分,以此作为推荐的依据. 下面引入一些标记:nu     …
Lecture 14 Dimensionality Reduction 降维 14.1 降维的动机一:数据压缩 Data Compression 现在讨论第二种无监督学习问题:降维. 降维的一个作用是数据压缩,允许我们使用较少的内存或磁盘空间,也加快算法速度. 举例: 假设用两个特征描述同一个物品的长度,x1单位是厘米cm,x2单位是英寸inches.这将导致高度冗余,所以需要减到一维. 将数据从三维降至二维: 将三维向量投射到一个二维的平面上,强迫使得所有的数据都在同一个平面上,降至二维的特征…
Lecture 12 支持向量机 Support Vector Machines 12.1 优化目标 Optimization Objective 支持向量机(Support Vector Machine) 是一个更加强大的算法,广泛应用于工业界和学术界.与逻辑回归和神经网络相比, SVM在学习复杂的非线性方程时提供了一种更为清晰,更加强大的方式.我们通过回顾逻辑回归,一步步将其修改为SVM. 首先回顾一下逻辑回归: 其 cost function 公式如下(这里稍微有点变化,将负号移到了括号内…