设S(n,k)=Σ C(n,i) i=0..k 根据lucas定理可以得到 S(n,k) mod p = [ S(n/p,k/p-1)*S(n mod p,p-1)+C(n/p,k/p)*S(n mod p,k mod p) ] mod p 除法均向下取整 预处理0≤n,k<P的C,S值,根据上式递归计算 #include<cstdio> typedef long long lint; const int P=2333; int c[P][P],s[P][P],t; int C(lint…
题目大意:给你$n,k$,求:$$\sum\limits_{i=0}^k\binom n i\pmod{2333}$$题解:令$p=2333,f(n,k)\equiv\sum\limits_{i=0}^k\binom n i\pmod p$$$\begin{align*}f(n,k)\equiv&\sum\limits_{i=0}^k\binom n i\pmod p\\ \equiv&\sum\limits_{i=0}^k\binom{\big\lfloor\frac np\big…
题目链接 loj#2038. 「SHOI2015」超能粒子炮・改 题解 卢卡斯定理 之后对于%p分类 剩下的是个子问题递归 n,k小于p的S可以预处理,C可以卢卡斯算 代码 #include<cstdio> #include<algorithm> inline long long read() { long long x = 0,f = 1; char c = getchar(); while(c < '0' || c > '9') c = getchar(); whi…