【JSOI 2008】 最小生成树计数】的更多相关文章

JSOI 2008 最小生成树计数 今天的题目终于良心一点辣 一个套路+模版题. 考虑昨天讲的那几个结论,我们有当我们只保留最小生成树中权值不超过 $ k $ 的边的时候形成的联通块是一定的. 我们可以先拿 kruskal 跑一棵最小生成树,然后我们可以从小到大枚举边权,把所有除开枚举到的边权的边全部加入并且缩点.现在我们就在这个缩点后的点集进行生成树计数就好了.答案就是每种边权算出答案的积. 因为我们知道,连入 $ k $ 边权的边后对于 $ 1 $ 到 $ k - 1 $ 的边加入后的最小生…
题目大意:给出一些边,求出一共能形成多少个最小生成树. 思路:最小生成树有非常多定理啊,我也不是非常明确.这里仅仅简单讲讲做法.关于定各种定理请看这里:http://blog.csdn.net/wyfcyx_forever/article/details/40182739 我们先做一次最小生成树.然后记录每一种长度的边有多少在最小生成树中,然后从小到大搜索,看每一种边权有多少种放法.然后全部的都算出来累乘就是终于的结果. CODE: #include <map> #include <cs…
最小生成树计数 (1s 128M) award [问题描述] 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了. [输入格式] 第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数.每个节点用1~n的整数编号.接下来的m行,每行…
http://www.lydsy.com/JudgeOnline/problem.php?id=1016 (题目链接) 题意 求图的最小生成树计数. Solution %了下题解,发现要写矩阵树,150++的程序什么鬼.于是就蒯了hzwer的简便方法. 将边按照权值大小排序,将权值相同的边分到一组,统计下每组分别用了多少条边.然后对于每一组进行dfs,判断是否能够用这一组中的其他边达到相同的效果.最后把每一组的方案数相乘就是答案. 注意并查集不要压缩路径,不然的话不好回溯. 代码 // bzoj…
最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可能很多,所以你只需要输出方案数对$31011$的模就可以了. 输入 第一行两个数$n$和$m$,其中$1\le n\le 100,1\le m\le 1000$,分别表示无向图的节点数和边数.每个节点用$1 \ldots n$的整数编号.接下来$m$行,每行三个整数$a,…
1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3517  Solved: 1396[Submit][Status][Discuss] Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的…
Kruskal/并查集+枚举 唉我还是too naive,orz Hzwer 一开始我是想:最小生成树删掉一条边,再加上一条边仍是最小生成树,那么这两条边权值必须相等,但我也可以去掉两条权值为1和3的,再加上权值为2和2的,不也满足题意吗?事实上,如果这样的话……最小生成树应该是1和2,而不是1和3或2和2!!! 所以呢?所以对于一个图来说,最小生成树有几条边权为多少的边,都是固定的!所以我们可以做一遍Kruskal找出这些边权,以及每种边权出现的次数.然后,对于每种边权,比方说出现了$v_i$…
最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树 可能很多,所以你只需要输出方案数对31011的模就可以了. Input 第 一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数.每个节点用1~n的整数编号.接下来的m行,每行包含两个整数:a,…
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1016 给出一张图,其中具有相同权值的边的数目不超过10,求最小生成树的个数. 分析 生成树的计数有一个什么什么算法... 我真的企图研究了...但是智商捉急的我实在看不懂论文... 所以最后还是写了暴力... 当然暴力也要靠正确的姿势的. 首先来看一个结论: 同一张图的所有最小生成树中,边权值相同的边的数目是一定的. 也就是说,假如某一张图的某一棵最小生成树由边权值为1,1,2,2,2,3的…
不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ------------------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm>   using namespace s…
1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 6200  Solved: 2518[Submit][Status][Discuss] Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的 最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生 成树可能很多,所以你只需要输出方案数对3101…
1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7429  Solved: 3098[Submit][Status][Discuss] Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的…
[BZOJ 1013][JSOI 2008] 球形空间产生器sphere Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一个整数n(1<=N=10).接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标.每一个实数精确到小数点 后6位,且其绝对值都不超过20000. Output 有且只有一行,…
1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了. Input 第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数.每个节点用1~n的整数编号.接下来的m…
1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4863  Solved: 1973[Submit][Status][Discuss] Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的…
1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等  就是说如果一种方案中权值为1的边有n条    那么在另一种方案中权值为1的边也一定有n条 2.如果边权为1的边连接的点是x1,x2,x3   那么另一种方案中边权为1的边连接的也一定是x1,x2,x3  如果知道了这两条定理那就很好做了啊: 因为等权边的条数一定,那么我们就可以预处理求出不同边权的边的条数 题目很人道的保证了边权相同的边…
[BZOJ1074] [luogu 4036] [JSOI 2008] 火星人 (二分答案+哈希+fhq treap) 题面 给出一个长度为n的字符串,m个操作,字符串仅包含小写英文字母 操作1:在k位置后插入字符v: 操作2:将k位置的字符修改为字符v 操作3:查询从该字符串中第 x个字符开始的字符串,与该字符串中第 y个字符开始的字符串,两个字串的公共前缀的长度 分析 看到动态插入和修改,考虑用fhq treap维护字符串序列.以下split指按子树大小分裂 操作1:同样split出前k个的…
http://www.lydsy.com/JudgeOnline/problem.php?id=1016 统计每一个边权在最小生成树中使用的次数,这个次数在任何一个最小生成树中都是固定的(归纳证明). 在同一个边权上对所有边权为这个的边暴力统计(可以用矩阵树定理),然后用并查集把这个边权的所有边贡献的连通性都加上,再统计下一个边权. 最后把答案乘起来. #include<cstdio> #include<cstring> #include<algorithm> usin…
[题目链接] 点击打开链接 [算法] 笔者做这题参考了这篇博客 : https://blog.sengxian.com/solutions/bzoj-1016 推荐阅读 首先,我们需要知道三个定理 : 定理1 : 若A,B是两棵不同的最小生成树,它们的权值从小到大排列分别为 :                         W(a1),W(a2),W(a3)....W(an-1)                         W(b1),W(b2),W(b3)....W(bn-1)    …
Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Kruskal algorithm of minimum spanning tree, XXX finds that there might be multiple solutions. Given an undirected weighted graph with n (1<=n<=100) vertex…
Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) [Problem Description] XXX is very interested in algorithm. After learning the Prim algorithm and Kruskal algorithm of minimum spanning tree, XXX…
题目链接 最小生成树有两个性质: 1.在不同的MST中某种权值的边出现的次数是一定的. 2.在不同的MST中,连接完某种权值的边后,形成的连通块的状态是一样的. \(Solution1\) 由这两个性质,可以先求一个MST,再枚举每一组边(权值相同的看做一组边),对每组边DFS(\(O(2^{10})\)),若某种方案连通性同MST相同(记录连通块个数即可).则sum++. 最后根据乘法原理,最后的答案即为所有sum相乘. \(Solution2\) 容易想到MatrixTree定理. 按边权从…
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了. Input 第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数.每个节点用1~n的整数编号.接下来的m行,每行包含两个整数:a, b, c,表示节点a…
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了. Input 第 一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数.每个节点用1~n的整数编号.接下来的m行,每行包含两个整数:a, b, c,表示节点…
http://www.lydsy.com/JudgeOnline/problem.php?id=1016 想也想不到QAQ 首先想不到的是:题目有说,具有相同权值的边不会超过10条. 其次:老是去想组合计数怎么搞.......于是最sb的暴力都不会了.. 所以这题暴力搞就行了orz 依次加边,每一种边的方案数乘起来就是方案了. 注意并查集不能路径压缩,否则在计数的时候会waQAQ因为并查集的路径压缩是不可逆的QAQ #include <cstdio> #include <cstring&…
题意是给定n个点,m条边的无向图,求最小生成树的个数对p取模. 用kruscal计算最小生成树时,每次取连接了两个不同联通块的最小的边.也就是先处理d1条c1长度的边,再处理d2条c2长度的边.长度相同的边无论怎么选,最大联通情况都是固定的. 分别对ci长度的边产生的几个联通块计算生成树数量再乘起来,然后把这些联通块缩点,再计算ci+1长度的边. 生成树计数用Matrix-Tree定理,上一篇是无重边的,这题的缩点后是会产生重边的,Matrix-tree也适用:   //抄别人博客的 Kirch…
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了. Input 第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数.每个节点用1~n的整数编号.接下来的m行,每行包含两个整数:a, b, c,表示节点a…
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1016 分析: 首先有个性质:如果边集E.E'都可以表示一个图G的最小生成树(当然E和E’的元素个数肯定一样),那么某确定权值的边在E中出现的次数==在E‘中出现的次数 简单证明一下: 按照Kruskal算法的流程来想,首先我们知道Kruskal求一个最小生成树是正确的,那么不同的最小生成树会怎么产生呢?当然是Kruskal选择权值相同的边的顺序,很有可能选择权值相同边的顺序不同导致后…
  Prufer数列 Prufer数列是无根树的一种数列.在组合数学中,Prufer数列由有一个对于顶点标过号的树转化来的数列,点数为n的树转化来的Prufer数列长度为n-2.它可以通过简单的迭代方法计算出来.它由Heinz Prufer于1918年在证明cayley定理时首次提出. 目录 1将树转化成Prufer数列的方法 2将Prufer数列转化成树的方法     将树转化成Prufer数列的方法 一种生成Prufer序列的方法是迭代删点,直到原图仅剩两个点.对于一棵顶点已经经过编号的树T…
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了. Input 第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数.每个节点用1~n的整数编号.接下来的m行,每行包含两个整数:a, b, c,表示节点a…