[BZOJ4784][ZJOI2017]仙人掌(树形DP)】的更多相关文章

4784: [Zjoi2017]仙人掌 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 312  Solved: 181[Submit][Status][Discuss] Description 如果一个无自环无重边无向连通图的任意一条边最多属于一个简单环,我们就称之为仙人掌.所谓简单环即不经过 重复的结点的环. 现在九条可怜手上有一张无自环无重边的无向连通图,但是她觉得这张图中的边数太少了,所以她想要在图上连上 一些新的边.同时为了方便的存储这张…
传送门 题意:给一个无向连通图,问给它加边形成仙人掌的方案数. 思路: 先考虑给一棵树加边形成仙人掌的方案数. 这个显然可以做树形dp. fif_ifi​表示把iii为根的子树加边形成仙人掌的方案数. 然后有两种情况: iii点没有父亲 iii点有父亲 对于第一种情况即iii是树根的情况,显然fi=(∏fv)∗g∣sonp∣f_i=(\prod f_v)*g_{|son_p|}fi​=(∏fv​)∗g∣sonp​∣​,其中gig_igi​表示给iii个儿子两两配对(每个儿子可配可不配的方案数).…
传送门 这图可以说是非常形象了2333 模拟赛的时候打了个表发现为一条链的时候答案是\(2^{n-2}\)竟然顺便过了第一个点 然后之后订正的时候强联通分量打错了调了一个上午 首先不难发现我们可以去掉所有在环上的边,那么就变成了一个森林,不同的树之间不可能有连边,那么只要所有树的答案乘起来就好了,只要在每一棵树内部树形\(dp\)即可 考虑对于\(u\),它的子树如何统计答案 我们强制子树必须得向外连一条边(显然最多只有一条),然后往上统计 如果子树里没有向外连边,每一棵子树的答案乘起来 如果向…
Description 如果一个无自环无重边无向连通图的任意一条边最多属于一个简单环,我们就称之为仙人掌.所谓简单环即不经过重复的结点的环. 现在九条可怜手上有一张无自环无重边的无向连通图,但是她觉得这张图中的边数太少了,所以她想要在图上连上一些新的边.同时为了方便的存储这张无向图,图中的边数又不能太多.经过权衡,她想要加边后得到的图为一棵仙人掌.不难发现合法的加边方案有很多,可怜想要知道总共有多少不同的加边方案.两个加边方案是不同的当且仅当一个方案中存在一条另一个方案中没有的边. Input…
首先考虑是棵树的话怎么做.可以发现相当于在树上选择一些长度>=2的路径使其没有交,同时也就相当于用一些没有交的路径覆盖整棵树. 那么设f[i]为覆盖i子树的方案数.转移时考虑包含根的路径.注意到每条跨根的路径都是由两条子树内到根的路径组成,只需要先统计出所有路径不跨根的方案数,再乘上包含根的路径的配对方案数就行了.既然路径不跨根,对于每棵子树可以独立计算再乘起来.冷静一下发现计算单棵子树的方案数还需要知道子树内可以向上延伸的路径的数量,那么不妨令f[i]改为表示用不跨根的路径覆盖i子树的方案数,…
传送门 题意:给出一个仙人掌森林求其最大独立集. 思路:如果没有环可以用经典的树形dpdpdp解决. fi,0/1f_{i,0/1}fi,0/1​表示第iii个点不选/选的最大独立集. 然后fi,0+=max{fv,0,fv,1},fi,1+=fv,0f_{i,0}+=max\{f_{v,0},f_{v,1}\},f_{i,1}+=f_{v,0}fi,0​+=max{fv,0​,fv,1​},fi,1​+=fv,0​转移即可. 现在有了环考虑把每个环单独提出来更新一下. 就用个队列把整个环记录下…
4316: 小C的独立集 Time Limit: 10 Sec  Memory Limit: 128 MB Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使取出的点尽量多. 小D虽然图论很弱,但是也知道无向图最大独立集是npc,但是小C很仁慈的给了一个很有特点的图: 图中任何一条边属于且仅属于一个简单环,图中没有重边和自环.小C说这样就会比较水了…
传送门 人脑转化条件过后的题意简述:给你一个仙人掌求最大带权独立集. 思路:跟这题没啥变化好吗?再写一遍加深记忆吧. 就是把每个环提出来分别枚举环在图中的最高点选还是不选分别dpdpdp一下即可,时间复杂度O(n+m)O(n+m)O(n+m) 代码: #include<bits/stdc++.h> #define ri register int using namespace std; inline int read(){ int ans=0,w=1; char ch=getchar(); w…
题目分析: 不难注意到仙人掌边可以删掉.在森林中考虑树形DP. 题目中说边不能重复,但我们可以在结束后没覆盖的边覆盖一个重复边,不改变方案数. 接着将所有的边接到当前点,然后每两个方案可以任意拼接.然后考虑引一条边上去的情况,选一个点不与周围连边就行了. 判仙人掌利用dfs树与树前缀和即可. 代码: #include<bits/stdc++.h> using namespace std; ; ; int T,n,m,arr[maxn],C[maxn],d[maxn],up[maxn],dep[…
其实挺简单的但是没想出来---- 首先判断无解情况,即,一开始的图就不是仙人掌,使用tarjan判断如果一个点dfs下去有超过一个点比他早,则说明存在非简单环. 然后考虑dp,显然原图中已经属于某个简单环的边就是没用的,tarjan缩点之后删掉两个端点在一个强连通分量中的边.(无向图的tarjan要记录father防止往回走,instack数组不需要了. 现在图变成了一个森林. 然后设sum为某个点的子树个数,w[i]为i棵子树相互连成环的方案数,w[i]=w[i-1]+w[i-2]*(i-1)…
[BZOJ4784][ZJOI2017]仙人掌(Tarjan,动态规划) 题面 BZOJ 洛谷 题解 显然如果原图不是仙人掌就无解. 如果原图是仙人掌,显然就是把环上的边给去掉,变成若干森林连边成为仙人掌的方案数. 那么对于一棵树而言,考虑其变成仙人掌的方案数. 设\(a_i\)表示匹配\(i\)个儿子的方案数,显然转移时\(a_i=a_{i-1}+(i-1)*a_{i-2}\),即考虑新加入的儿子是匹配另外一个儿子还是不管. 设\(f_u\)表示节点\(u\)的子树匹配成仙人掌的方案数,这里要…
题意: 给定一个仙人掌,边权为1 距离定义为两个点之间的最短路径 直径定义为距离最远的两个点的距离 求仙人掌直径 题解: 类比树形dp求直径. f[i]表示i向下最多多长 处理链的话,直接dp即可. 处理环的话,类似点双tarjan,把环上的点都拉出来. 先考虑拼接更新答案.断环成链复制一倍,为了保证最短路,答案必须只能是f[i]+f[j]+i-j (i-len/2<=j<i) 单调队列优化. 直接i-j即可,另一半的绕环会在复制后的那里处理. 然后更新f[x],直接找环上其他的元素,距离就是…
原文链接https://www.cnblogs.com/zhouzhendong/p/CF980F.html 题目传送门 - CF980F 题意 给定一个 $n$ 个节点 $m$ 条长为 $1$ 的边的每个点最多只属于一个环的仙人掌. 现在请你通过删边把仙人掌转化成树. 对于每一个点,输出在所有不同的删边方案中,  距离该点最远的点与他之间的距离值 的最小值. $n\leq 5\times 10^5$ 题解 首先,我们跑一跑 Tarjan ,找出每一个双联通分量. 然后我们把每一个双联通分量里面…
题面 n n n 个点, m m m 条边. 1 ≤ n ≤ 1 0 5 , n − 1 ≤ m ≤ 2 × 1 0 5 1\leq n\leq 10^5,n-1\leq m\leq 2\times10^5 1≤n≤105,n−1≤m≤2×105 . 题解 直接求行列式是不现实的,我们可以通过行列式的定义式来思考解法. 一个会产生贡献的排列,相当于要每个点选一个邻接点当爹,每个点的爹必须不一样. 如果这个点度为 1,那么它和它的邻接点必须配对,然后相当于删掉了.同时这两个点使得该排列的贡献乘上…
1040: [ZJOI2008]骑士 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3312  Solved: 1269[Submit][Status][Discuss] Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里,在和平环境中安逸了数百年的Z国又怎能抵挡的住Y国的军队.于是人们把…
这道题吗= =首先解决了我多年以来对仙人掌图的疑问,原来这种高大上的东西原来是这个啊= = 然后,看到这种题,首先必须的就是缩点= = 缩点完之后呢,变成在树上找最长路了= =直接树形dp了 那么那些环呢,就是一个环形dp了,可以先把它拆成一条链,然后注意到最长路径=max(f[i]+f[j]-dist(i,j))  拆成链的话dist(i,j)=i-j 然后就发现dist(i,j)有单调性,就可以用单调队列优化了= = 这样写就可以a了= = ps1:今天发现有人给我留言了真开心QAQ 感觉自…
题链: https://www.luogu.org/problemnew/show/P3687题解: 计数DP,树形DP. (首先对于这个图来说,如果初始就不是仙人掌,那么就直接输出0) 然后由于本来图中就存在于环中的边,不可能再次被包含, 所以图中的环就把这个图分为的若干颗树. 那么答案就是分别求出每颗树的方案数并相乘. 现在问题变为了求:把一颗树通过连边使得仍然是仙人掌的方案数. 定义如下3个数组: f[u]:表示u这颗子树中没有一条从u到子树内某个的节点的路径可以向其它子树连边的方案数.…
题目链接 类似求树的直径,可以用(类似)树形DP求每个点其子树(在仙人掌上就是诱导子图)最长链.次长链,用每个点子节点不同子树的 max{最长链}+max{次长链} 更新答案.(不需要存次长链,求解过程中先更新ans,然后再更新最长链即可) 设f[i]为点i的诱导子图中最长链的长度. 对于环,我们找一个环上dep[]最小的点x代表这个环 看做一个点(dep为按DFS顺序更新的),求出f[x],环以外的部分像树一样直接做就可以. 对于环的处理:f[x]比较显然,f[x]=max{f[v]+dis(…
树形dp的状态转移分为两种,一种为从子节点到父节点,一种为父节点到子节点,下面主要讨论子节点到父亲节点的情况: 例题1(战略游戏): 这是一道典型的由子节点状态转移到父节点的问题,而且兄弟节点之间没有相互影响,我们用f[i][0]/f[i][1]表示i不取/要取时其所在子树总共最少取的节点数,不难得出dp方程: 代码: #include<iostream> #include<cstdio> #include<cstdlib> #include<cmath>…
算是一个……复习以及进阶? 什么是树形dp 树形dp是一种奇妙的dp…… 它的一个重要拓展是和各种树形的数据结构结合,比如说在trie上.自动机上的dp. 而且有些时候还可以拓展到环加外向树.仙人掌上的酷炫操作. 好吧上面这些我都不会. 树形dp的例题 [简单dp]P2015 二叉苹果树 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来描述一根树…
Network Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4478   Accepted: 1292 Description Yixght is a manager of the company called SzqNetwork(SN). Now she's very worried because she has just received a bad news which denotes that DxtNet…
可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话dp貌似就比较麻烦了. 我们考虑一般树形dp都是怎样的,一般的树形dp,都是因为子树上的f值可以无后效的转移到根节点上,并且子树的f值与父亲无关,如果我们按照上述定义,那么就会发现这需要两遍dfs来解决,并且细节不少. 但是两遍dfs我并不会QAQ 所以我们考虑转换一种定义,设f[x][k]表示在以x…
4726: [POI2017]Sabota? Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 128  Solved: 49[Submit][Status][Discuss] Description 某个公司有n个人, 上下级关系构成了一个有根树.其中有个人是叛徒(这个人不知道是谁).对于一个人, 如果他下属(直接或者间接, 不包括他自己)中叛徒占的比例超过x,那么这个人也会变成叛徒,并且他的所有下属都会变成叛徒…
题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不考虑i点时子树的最优权值和,即(j是i的儿子),显然dp[i]>=sum[i].那么问题是考虑i点时dp[i]的值是多少,假设有一条链通过i,且端点a和b都在i的子树里,即LCA(a,b)=i,如果考虑加上这条链的权值,那么a->i, b->i的路上的点v都不能有链经过它们(题目要求链不相交…
切题ing!!!!! HDU  2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #include <cstdio> #include <cstring> #include <cstdlib> #include <cmath> #include <map> #include <queue> #include <set>…
给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<=500000) 考虑树形DP,我们令mn[i]表示i节点无法与1节点相连切除的最小权值.显然有mn[i]=min(E(fa,i),mn[fa]).大致就是i到1的简单路径上的最小边.我们对于每个询问.把询问的点不妨称为关键点.令dp[i]表示i节点不能与子树的关键点连接切掉的最小权值.那么有,如果son[i]…
原题:http://poj.org/problem?id=2342 树形dp入门题. 我们让dp[i][0]表示第i个人不去,dp[i][1]表示第i个人去 ,根据题意我们可以很容易的得到如下递推公式: dp[father][1] += dp[son][0] dp[father][0] += max(dp[son][0],dp[son][1]); 找到这棵树的根节点,对树向下深搜的过程中进行dp即可. #include<cstdio> #include<cstring> #incl…
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1561 思路:树形dp+01背包 //看注释可以懂 用vector建树更简单. 代码: #include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #include<vector> using namespace std; #define ll long…
好题.. 先找出每个节点的树上最长路 由树形DP完成 节点x,设其最长路的子节点为y 对于y的最长路,有向上和向下两种情况: down:y向子节点的最长路g[y][0] up:x的次长路的g[x][1]+dis[x][y] up:up[fa[x]]+dis[x][y] dfs1找向下,即向子节点的最长路 dfs2找向上的最长路 最后最长路f[i]=max(up[x],g[x][0]) 第二部分 找最长连续子序列,使得序列中abs(mx-mn)<=m 这次学习了用单调队列的做法 两个队列mx,mn…
就是有n个点n条边,那么有且只有一个环那么用Dfs把在环上的两个点找到.然后拆开,从这条个点分别作树形Dp即可. #include <cstdio> #include <cstring> #define LL long long ; ]; LL head[Maxn],F[Maxn],G[Maxn],cnt,U,V,E,vis[Maxn],a[Maxn],n,Ans; inline void Add(LL u,LL v) {edge[++cnt].to=v;edge[cnt].nex…