3d点云与cad模型】的更多相关文章

https://stackoverflow.com/questions/19000096/match-3d-point-cloud-to-cad-model…
原文:WPF在3D Cad模型中利用TextureCoordinates实现颜色渐变显示偏差值的变化 注:最近在做3D机械模型重建方面的软件,需要根据光栅传感器采集的数据绘制3D图形,并显示出色差以及填充和线框图. 以下转载自:http://blog.csdn.net/wmjcom/article/details/6019460 1.本文的目的:       在制造业领域,对于cad模型和加工零件,有理论值和实测值的区别.理论值是设计人员设计cad模型中的数值,而实测值是加工好零件后检测出的数值…
​蝶恋花·槛菊愁烟兰泣露 槛菊愁烟兰泣露,罗幕轻寒,燕子双飞去. 明月不谙离恨苦,斜光到晓穿朱户. 昨夜西风凋碧树,独上高楼,望尽天涯路. 欲寄彩笺兼尺素.山长水阔知何处? --晏殊 导读: 3D点云配准是计算机视觉的关键研究问题之一,在多领域工程应用中具有重要应用,如逆向工程.SLAM.图像处理和模式识别等.点云配准的目的是求解出同一坐标下不同姿态点云的变换矩阵,利用该矩阵实现多视扫描点云的精确配准,最终获取完整的3D数字模型.场景.本质上,关于六自由度(旋转和平移)的3D点云配准问题是典型的…
3D点云几何拟合 Supervised Fitting of Geometric Primitives to 3D Point Clouds 论文地址: http://openaccess.thecvf.com/content_CVPR_2019/papers/Li_Supervised_Fitting_of_Geometric_Primitives_to_3D_Point_Clouds_CVPR_2019_paper.pdf 摘要 将几何基元拟合到三维点云数据可以在底层三维形状的低层数字化三维…
3D点云深度学* 在自动驾驶中关于三维点云的深度学*方法应用.三维场景语义理解的方法以及对应的关键技术介绍. 1. 数据 但是对于3D点云,数据正在迅速增长.大有从2D向3D发展的趋势,比如在opencv中就已经慢慢包含了3D点云的处理的相关模块,在数据方面点云的获取也是有多种渠道, 无论是源于CAD模型还是来自LiDAR传感器或RGBD相机的扫描点云,无处不在. 另外,大多数系统直接获取3D点云而不是拍摄图像并进行处理.因此,在深度学*大火的年代,应该如何应用这些令人惊叹的深度学*工具,在3D…
3D点云点云分割.目标检测.分类 原标题Deep Learning for 3D Point Clouds: A Survey 作者Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Bennamoun 原文参考链接:https://arxiv.org/abs/1912.12033 导读 3D点云学*( Point Clouds)作为*年来的研究热点之一,受到了广泛关注,每年在各大会议上都有大量的相关文章发表.当前…
3D点云重建原理及Pytorch实现 Pytorch: Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction 一种Pytorch实现方法:学习高效的点云生成方法用于稠密三维物体重建 Article: https://chenhsuanlin.bitbucket.io/3D-point-cloud-generation/paper.pdf Original TF implementation: ht…
目录 摘要 1.引言: 2.点云深度学习的挑战 3.基于结构化网格的学习 3.1 基于体素 3.2 基于多视图 3.3 高维晶格 4.直接在点云上进行的深度学习 4.1 PointNet 4.2 局部结构计算方法 4.2.1 不探索局部相关性的方法 4.2.2 探索局部相关性的方法 4.3 基于图 5. 基准数据集 5.1 3D模型数据集 5.2 3D室内数据集 5.3 3D室外数据集 6. 深度学习在3D视觉任务中的应用 6.1 分类 6.2 分割 6.3 目标检测 7. 总结与结论 (Rem…
PythonOCC comes with importers/exporters for the most commonly used standard data files format in engineering: STEP, IGES, STL (ascii/binary) and VRML. After the import is successfull, the resulting shape can be handled as a native topology/geometry,…
目录 摘要 1.引言: 2.背景 2.1 数据集 2.2评价指标 3.3D点云分割 3.1 3D语义分割 3.1.1 基于投影的方法 多视图表示 球形表示 3.1.2 基于离散的方法 稠密离散表示 稀疏的离散表示 3.1.3 混合方法 3.1.4 基于点的方法 逐点MLP方法 点卷积方法 基于RNN方法 基于图方法 3.2 实例分割 3.2.1 基于候选框的方法 3.2.2 不需要候选框的方法 3.3 部件分割 3.4 总结 4. 结论 3D点云深度学习:综述(3D点云分割部分) Deep Le…